Publication:
Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach

dc.contributor.authorLara-Doña, Alejandro
dc.contributor.authorTorres-Sanchez, Sonia
dc.contributor.authorPriego-Torres, Blanca
dc.contributor.authorBerrocoso, Esther
dc.contributor.authorSanchez-Morillo, Daniel
dc.contributor.authoraffiliation[Lara-Doña,A; Priego-Torres,B; Sanchez-Morillo,D] Biomedical Engineering and Telemedicine Research Group, Systems and Automation Engineering Area, Department of Automation Engineering, Electronics and Computer Architecture and Networks, Universidad de Cádiz, Cádiz, Spain. [Lara-Doña,A; Torres-Sanchez,S; Priego-Torres,B; Berrocoso,E; Sanchez-Morillo,D] Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain. [Torres-Sanchez,S; Berrocoso,E] Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Cádiz, Spain. [Torres-Sanchez,S; Berrocoso,E] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
dc.contributor.funderThis study was supported by grants co-financed by the “Fondo Europeo de Desarrollo Re gional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad” (MINECO: RTI2018-099778-B-I00); the “Programa Operativo de Andalucía FEDER, Iniciativa Territo rial Integrada ITI 2014-2020 Consejería Salud, Junta de Andalucía” (PI-0080-2017); the “Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), Consejería de Economía, Conocimiento, Em presas y Universidad, Junta de Andalucía (P20_00958)”; the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement Nº 955684; the “In stituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (LI19/06IN-CO22; IN-CO09; IN-CO07)”; the “Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía” (CTS-510 and TIC-212); the “Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM” (CB/07/09/0033); and the “Universidad de Cádiz, contrato predoctoral fpuUCA 2019”.
dc.date.accessioned2022-10-28T11:44:32Z
dc.date.available2022-10-28T11:44:32Z
dc.date.issued2021-10-26
dc.description.abstractStrong evidence from studies on primates and rodents shows that changes in pupil diameter may reflect neural activity in the locus coeruleus (LC). Pupillometry is the only available non-invasive technique that could be used as a reliable and easily accessible real-time biomarker of changes in the in vivo activity of the LC. However, the application of pupillometry to preclinical research in rodents is not yet fully standardized. A lack of consensus on the technical specifications of some of the components used for image recording or positioning of the animal and cameras have been recorded in recent scientific literature. In this study, a novel pupillometry system to indirectly assess, in real-time, the function of the LC in anesthetized rodents is presented. The system comprises a deep learning SOLOv2 instance-based fast segmentation framework and a platform designed to place the experimental subject, the video cameras for data acquisition, and the light source. The performance of the proposed setup was assessed and compared to other baseline methods using a validation and an external test set. In the latter, the calculated intersection over the union was 0.93 and the mean absolute percentage error was 1.89% for the selected method. The Bland-Altman analysis depicted an excellent agreement. The results confirmed a high accuracy that makes the system suitable for real-time pupil size tracking, regardless of the pupil's size, light intensity, or any features typical of the recording process in sedated mice. The framework could be used in any neurophysiological study with sedated or fixed-head animals.es_ES
dc.description.versionYeses_ES
dc.identifier.citationLara-Doña A, Torres-Sanchez S, Priego-Torres B, Berrocoso E, Sanchez-Morillo D. Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. Sensors. 2021 Oct 26;21(21):7106es_ES
dc.identifier.doi10.3390/s21217106es_ES
dc.identifier.essn1424-8220
dc.identifier.issn1424-8239
dc.identifier.pmcPMC8588114
dc.identifier.pmid34770410es_ES
dc.identifier.urihttp://hdl.handle.net/10668/4297
dc.journal.titleSensors
dc.language.isoen
dc.page.number19 p.
dc.publisherMDPIes_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/21/21/7106/htmes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsAcceso abiertoes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPupillometryes_ES
dc.subjectLocus coeruleuses_ES
dc.subjectPupil sizees_ES
dc.subjectImage processinges_ES
dc.subjectDeep learninges_ES
dc.subjectMachine learninges_ES
dc.subjectPupilaes_ES
dc.subjectAnisocoriaes_ES
dc.subjectProcesamiento de imagen asistido por computadores_ES
dc.subjectAprendizaje profundoes_ES
dc.subjectAprendizaje automáticoes_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animalses_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Micees_ES
dc.subject.meshMedical Subject Headings::Anatomy::Sense Organs::Eye::Anterior Eye Segment::Iris::Pupiles_ES
dc.subject.meshMedical Subject Headings::Anatomy::Nervous System::Central Nervous System::Brain::Brain Stem::Mesencephalon::Locus Coeruleuses_ES
dc.subject.meshMedical Subject Headings::Psychiatry and Psychology::Behavior and Behavior Mechanisms::Psychology, Social::Group Processes::Consensuses_ES
dc.subject.meshMedical Subject Headings::Chemicals and Drugs::Biological Factors::Biological Markers::Biomarkers, Pharmacologicales_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primateses_ES
dc.titleAutomated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approaches_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LaraDoña_AutomatedMouse.pdf
Size:
3.88 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado