Publication: Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach
dc.contributor.author | Lara-Doña, Alejandro | |
dc.contributor.author | Torres-Sanchez, Sonia | |
dc.contributor.author | Priego-Torres, Blanca | |
dc.contributor.author | Berrocoso, Esther | |
dc.contributor.author | Sanchez-Morillo, Daniel | |
dc.contributor.authoraffiliation | [Lara-Doña,A; Priego-Torres,B; Sanchez-Morillo,D] Biomedical Engineering and Telemedicine Research Group, Systems and Automation Engineering Area, Department of Automation Engineering, Electronics and Computer Architecture and Networks, Universidad de Cádiz, Cádiz, Spain. [Lara-Doña,A; Torres-Sanchez,S; Priego-Torres,B; Berrocoso,E; Sanchez-Morillo,D] Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain. [Torres-Sanchez,S; Berrocoso,E] Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Cádiz, Spain. [Torres-Sanchez,S; Berrocoso,E] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain. | |
dc.contributor.funder | This study was supported by grants co-financed by the “Fondo Europeo de Desarrollo Re gional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad” (MINECO: RTI2018-099778-B-I00); the “Programa Operativo de Andalucía FEDER, Iniciativa Territo rial Integrada ITI 2014-2020 Consejería Salud, Junta de Andalucía” (PI-0080-2017); the “Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), Consejería de Economía, Conocimiento, Em presas y Universidad, Junta de Andalucía (P20_00958)”; the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement Nº 955684; the “In stituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (LI19/06IN-CO22; IN-CO09; IN-CO07)”; the “Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía” (CTS-510 and TIC-212); the “Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM” (CB/07/09/0033); and the “Universidad de Cádiz, contrato predoctoral fpuUCA 2019”. | |
dc.date.accessioned | 2022-10-28T11:44:32Z | |
dc.date.available | 2022-10-28T11:44:32Z | |
dc.date.issued | 2021-10-26 | |
dc.description.abstract | Strong evidence from studies on primates and rodents shows that changes in pupil diameter may reflect neural activity in the locus coeruleus (LC). Pupillometry is the only available non-invasive technique that could be used as a reliable and easily accessible real-time biomarker of changes in the in vivo activity of the LC. However, the application of pupillometry to preclinical research in rodents is not yet fully standardized. A lack of consensus on the technical specifications of some of the components used for image recording or positioning of the animal and cameras have been recorded in recent scientific literature. In this study, a novel pupillometry system to indirectly assess, in real-time, the function of the LC in anesthetized rodents is presented. The system comprises a deep learning SOLOv2 instance-based fast segmentation framework and a platform designed to place the experimental subject, the video cameras for data acquisition, and the light source. The performance of the proposed setup was assessed and compared to other baseline methods using a validation and an external test set. In the latter, the calculated intersection over the union was 0.93 and the mean absolute percentage error was 1.89% for the selected method. The Bland-Altman analysis depicted an excellent agreement. The results confirmed a high accuracy that makes the system suitable for real-time pupil size tracking, regardless of the pupil's size, light intensity, or any features typical of the recording process in sedated mice. The framework could be used in any neurophysiological study with sedated or fixed-head animals. | es_ES |
dc.description.version | Yes | es_ES |
dc.identifier.citation | Lara-Doña A, Torres-Sanchez S, Priego-Torres B, Berrocoso E, Sanchez-Morillo D. Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. Sensors. 2021 Oct 26;21(21):7106 | es_ES |
dc.identifier.doi | 10.3390/s21217106 | es_ES |
dc.identifier.essn | 1424-8220 | |
dc.identifier.issn | 1424-8239 | |
dc.identifier.pmc | PMC8588114 | |
dc.identifier.pmid | 34770410 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10668/4297 | |
dc.journal.title | Sensors | |
dc.language.iso | en | |
dc.page.number | 19 p. | |
dc.publisher | MDPI | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/21/21/7106/htm | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.accessRights | Acceso abierto | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Pupillometry | es_ES |
dc.subject | Locus coeruleus | es_ES |
dc.subject | Pupil size | es_ES |
dc.subject | Image processing | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Pupila | es_ES |
dc.subject | Anisocoria | es_ES |
dc.subject | Procesamiento de imagen asistido por computador | es_ES |
dc.subject | Aprendizaje profundo | es_ES |
dc.subject | Aprendizaje automático | es_ES |
dc.subject.mesh | Medical Subject Headings::Organisms::Eukaryota::Animals | es_ES |
dc.subject.mesh | Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Mice | es_ES |
dc.subject.mesh | Medical Subject Headings::Anatomy::Sense Organs::Eye::Anterior Eye Segment::Iris::Pupil | es_ES |
dc.subject.mesh | Medical Subject Headings::Anatomy::Nervous System::Central Nervous System::Brain::Brain Stem::Mesencephalon::Locus Coeruleus | es_ES |
dc.subject.mesh | Medical Subject Headings::Psychiatry and Psychology::Behavior and Behavior Mechanisms::Psychology, Social::Group Processes::Consensus | es_ES |
dc.subject.mesh | Medical Subject Headings::Chemicals and Drugs::Biological Factors::Biological Markers::Biomarkers, Pharmacological | es_ES |
dc.subject.mesh | Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates | es_ES |
dc.title | Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach | es_ES |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LaraDoña_AutomatedMouse.pdf
- Size:
- 3.88 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo publicado