High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia.

dc.contributor.authorChulián, Salvador
dc.contributor.authorMartínez-Rubio, Álvaro
dc.contributor.authorPérez-García, Víctor M
dc.contributor.authorRosa, María
dc.contributor.authorBlázquez Goñi, Cristina
dc.contributor.authorRodríguez Gutiérrez, Juan Francisco
dc.contributor.authorHermosín-Ramos, Lourdes
dc.contributor.authorMolinos Quintana, Águeda
dc.contributor.authorCaballero-Velázquez, Teresa
dc.contributor.authorRamírez-Orellana, Manuel
dc.contributor.authorCastillo Robleda, Ana
dc.contributor.authorFernández-Martínez, Juan Luis
dc.date.accessioned2025-01-07T12:59:47Z
dc.date.available2025-01-07T12:59:47Z
dc.date.issued2020-12-23
dc.description.abstractArtificial intelligence methods may help in unveiling information that is hidden in high-dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantitative data with the potential to be used for the construction of response biomarkers. Many computational methods from the bioinformatics toolbox can be applied to these data, but they have not been exploited in their full potential in leukaemias, specifically for the case of childhood B-cell Acute Lymphoblastic Leukaemia. In this paper, we analysed flow cytometry data that were obtained at diagnosis from 56 paediatric B-cell Acute Lymphoblastic Leukaemia patients from two local institutions. Our aim was to assess the prognostic potential of immunophenotypical marker expression intensity. We constructed classifiers that are based on the Fisher's Ratio to quantify differences between patients with relapsing and non-relapsing disease. We also correlated this with genetic information. The main result that arises from the data was the association between subexpression of marker CD38 and the probability of relapse.
dc.identifier.doi10.3390/cancers13010017
dc.identifier.issn2072-6694
dc.identifier.pmcPMC7793064
dc.identifier.pmid33374500
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC7793064/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2072-6694/13/1/17/pdf?version=1608697614
dc.identifier.urihttps://hdl.handle.net/10668/25117
dc.issue.number1
dc.journal.titleCancers
dc.journal.titleabbreviationCancers (Basel)
dc.language.isoen
dc.organizationSAS - Hospital Universitario de Jerez de la Frontera
dc.organizationSAS - Hospital Universitario Virgen del Rocío
dc.organizationSAS - D.S.A.P. Jerez-Costa Noroeste
dc.organizationSAS - Hospital Universitario Puerta del Mar
dc.organizationInstituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAcute Lymphoblastic Leukaemia
dc.subjectCD38
dc.subjectFisher’s Ratio
dc.subjectflow cytometry data
dc.subjectmathematical oncology
dc.subjectpersonalised medicine
dc.subjectresponse biomarkers
dc.titleHigh-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number13

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC7793064.pdf
Size:
17.15 MB
Format:
Adobe Portable Document Format