Publication:
Logical Inference Framework for Experimental Design of Mechanical Characterization Procedures

dc.contributor.authorRus, Guillermo
dc.contributor.authorMelchor, Juan
dc.contributor.authoraffiliation[Rus, Guillermo] Univ Granada, Dept Struct Mech, E-18071 Granada, Spain
dc.contributor.authoraffiliation[Melchor, Juan] Univ Granada, Dept Struct Mech, E-18071 Granada, Spain
dc.contributor.authoraffiliation[Rus, Guillermo] Biosanitary Res Inst, Granada 18016, Spain
dc.contributor.authoraffiliation[Melchor, Juan] Biosanitary Res Inst, Granada 18016, Spain
dc.contributor.authoraffiliation[Rus, Guillermo] Univ Granada, MNat Sci Unit Excellence, E-18071 Granada, Spain
dc.contributor.authoraffiliation[Melchor, Juan] Univ Granada, MNat Sci Unit Excellence, E-18071 Granada, Spain
dc.contributor.funderMinistry of Education
dc.contributor.funderMinistry of Health
dc.contributor.funderJunta de Andalucia
dc.contributor.funderuniversity of Granada
dc.date.accessioned2023-02-12T02:23:15Z
dc.date.available2023-02-12T02:23:15Z
dc.date.issued2018-09-01
dc.description.abstractOptimizing an experimental design is a complex task when a model is required for indirect reconstruction of physical parameters from the sensor readings. In this work, a formulation is proposed to unify the probabilistic reconstruction of mechanical parameters and an optimization problem. An information-theoretic framework combined with a new metric of information density is formulated providing several comparative advantages: (i) a straightforward way to extend the formulation to incorporate additional concurrent models, as well as new unknowns such as experimental design parameters in a probabilistic way; (ii) the model causality required by Bayes' theorem is overridden, allowing generalization of contingent models; and (iii) a simpler formulation that avoids the characteristic complex denominator of Bayes' theorem when reconstructing model parameters. The first step allows the solving of multiple-model reconstructions. Further extensions could be easily extracted, such as robust model reconstruction, or adding alternative dimensions to the problem to accommodate future needs.
dc.identifier.doi10.3390/s18092984
dc.identifier.essn1424-8220
dc.identifier.unpaywallURLhttps://www.mdpi.com/1424-8220/18/9/2984/pdf
dc.identifier.urihttp://hdl.handle.net/10668/19326
dc.identifier.wosID446940600243
dc.issue.number9
dc.journal.titleSensors
dc.journal.titleabbreviationSensors
dc.language.isoen
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.publisherMdpi
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectinverse problem
dc.subjectinference Bayesian updating
dc.subjectmodel-class selection
dc.subjectstochastic inverse problem
dc.subjectprobability logic
dc.subjectexperimental design
dc.subjectStructural models
dc.subjectSelection
dc.subjectSimulation
dc.titleLogical Inference Framework for Experimental Design of Mechanical Characterization Procedures
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number18
dc.wostypeArticle
dspace.entity.typePublication

Files