Publication:
Logical Inference Framework for Experimental Design of Mechanical Characterization Procedures

No Thumbnail Available

Date

2018-09-01

Authors

Rus, Guillermo
Melchor, Juan

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi
Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

Optimizing an experimental design is a complex task when a model is required for indirect reconstruction of physical parameters from the sensor readings. In this work, a formulation is proposed to unify the probabilistic reconstruction of mechanical parameters and an optimization problem. An information-theoretic framework combined with a new metric of information density is formulated providing several comparative advantages: (i) a straightforward way to extend the formulation to incorporate additional concurrent models, as well as new unknowns such as experimental design parameters in a probabilistic way; (ii) the model causality required by Bayes' theorem is overridden, allowing generalization of contingent models; and (iii) a simpler formulation that avoids the characteristic complex denominator of Bayes' theorem when reconstructing model parameters. The first step allows the solving of multiple-model reconstructions. Further extensions could be easily extracted, such as robust model reconstruction, or adding alternative dimensions to the problem to accommodate future needs.

Description

MeSH Terms

DeCS Terms

CIE Terms

Keywords

inverse problem, inference Bayesian updating, model-class selection, stochastic inverse problem, probability logic, experimental design, Structural models, Selection, Simulation

Citation