Publication: Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1.
Loading...
Identifiers
Date
2017-01-01
Authors
L-Lopez, Fernando
Sarmento-Cabral, Andre
Herrero-Aguayo, Vicente
Gahete, Manuel D
Castaño, Justo P
Luque, Raul M
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Abstract
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine-metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat-diet obese mouse model, as well as in vitro primary cultures of normal-mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet-induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine-metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.
Description
MeSH Terms
Animals
Cell line, tumor
Diet, high-fat
Growth hormone
Humans
Insulin
Insulin resistance
Insulin-like growth factor I
Male
Obesity
Prostate
Prostatic neoplasms
RNA, messenger
Signal transduction
Cell line, tumor
Diet, high-fat
Growth hormone
Humans
Insulin
Insulin resistance
Insulin-like growth factor I
Male
Obesity
Prostate
Prostatic neoplasms
RNA, messenger
Signal transduction
DeCS Terms
ARN mensajero
Dieta alta en grasa
Hormona del crecimiento
Insulina
Línea celular tumoral
Neoplasias de la próstata
Obesidad
Próstata
Dieta alta en grasa
Hormona del crecimiento
Insulina
Línea celular tumoral
Neoplasias de la próstata
Obesidad
Próstata
CIE Terms
Keywords
IGF1, Insulin, Obesity, Prostate, Prostate cancer
Citation
L-López F, Sarmento-Cabral A, Herrero-Aguayo V, Gahete MD, Castaño JP, Luque RM. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1. J Cell Mol Med. 2017 Sep;21(9):1893-1904