Publication:
Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples.

dc.contributor.authorGomez-Gonzalez, Emilio
dc.contributor.authorFernandez-Muñoz, Beatriz
dc.contributor.authorBarriga-Rivera, Alejandro
dc.contributor.authorNavas-Garcia, Jose Manuel
dc.contributor.authorFernandez-Lizaranzu, Isabel
dc.contributor.authorMunoz-Gonzalez, Francisco Javier
dc.contributor.authorParrilla-Giraldez, Ruben
dc.contributor.authorRequena-Lancharro, Desiree
dc.contributor.authorGuerrero-Claro, Manuel
dc.contributor.authorGil-Gamboa, Pedro
dc.contributor.authorRosell-Valle, Cristina
dc.contributor.authorGomez-Gonzalez, Carmen
dc.contributor.authorMayorga-Buiza, Maria Jose
dc.contributor.authorMartin-Lopez, Maria
dc.contributor.authorMuñoz, Olga
dc.contributor.authorMartin, Juan Carlos Gomez
dc.contributor.authorLopez, Maria Isabel Relimpio
dc.contributor.authorAceituno-Castro, Jesus
dc.contributor.authorPerales-Esteve, Manuel A
dc.contributor.authorPuppo-Moreno, Antonio
dc.contributor.authorCozar, Francisco Jose Garcia
dc.contributor.authorOlvera-Collantes, Lucia
dc.contributor.authorde Los Santos-Trigo, Silvia
dc.contributor.authorGomez, Emilia
dc.contributor.authorPernaute, Rosario Sanchez
dc.contributor.authorPadillo-Ruiz, Javier
dc.contributor.authorMarquez-Rivas, Javier
dc.contributor.funderInstitute of Health ‘Carlos III
dc.contributor.funderSpanish Ministry of Science and Innovation
dc.contributor.funderFEDER Program
dc.contributor.funderSpanish National Agency of Research.
dc.date.accessioned2023-02-09T11:46:25Z
dc.date.available2023-02-09T11:46:25Z
dc.date.issued2021-07-30
dc.description.abstractOptical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·[Formula: see text]L-1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.
dc.description.sponsorshipTis research was funded by grants number COV20-00080 and COV20-00173 of the 2020 Emergency Call for Research Projects about the SARS-CoV-2 virus and the COVID-19 disease of the Institute of Health ‘Carlos III’, Spanish Ministry of Science and Innovation, and by grant number EQC2019-006240-P of the 2019 Call for Acquisition of Scientifc Equipment, FEDER Program, Spanish Ministry of Science and Innovation. Tis work has been supported by the European Commission through the JRC HUMAINT project. ABR was supported by grant number RTI2018-094465-J funded by the Spanish National Agency of Research.
dc.description.versionSi
dc.identifier.citationGomez-Gonzalez E, Fernandez-Muñoz B, Barriga-Rivera A, Navas-Garcia JM, Fernandez-Lizaranzu I, Munoz-Gonzalez FJ, et al. Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples. Sci Rep. 2021 Aug 10;11(1):16201
dc.identifier.doi10.1038/s41598-021-95756-3
dc.identifier.essn2045-2322
dc.identifier.pmcPMC8355230
dc.identifier.pmid34376765
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355230/pdf
dc.identifier.unpaywallURLhttps://www.nature.com/articles/s41598-021-95756-3.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18356
dc.issue.number1
dc.journal.titleScientific reports
dc.journal.titleabbreviationSci Rep
dc.language.isoen
dc.organizationInstituto de Investigación e Innovación en Ciencias Biomédicas
dc.organizationFundación Pública Andaluz Progreso y Salud-FPS
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationHospital Universitario Virgen Macarena
dc.page.number12
dc.provenanceRealizada la curación de contenido 30/08/2024
dc.publisherNature Publishing Group
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDCOV20-00080
dc.relation.projectIDCOV20-00173
dc.relation.projectIDEQC2019-006240-P
dc.relation.projectIDRTI2018-094465-J
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-021-95756-3
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectRed Andaluza de Diseño y Traslación de Terapias Avanzadas
dc.subjectMolecular diagnostic techniques
dc.subjectPoint-of-care systems
dc.subjectSaliva
dc.subjectSensitivity and specificity
dc.subjectSpectroscopy, near-infrared
dc.subject.decsCélulas HEK293
dc.subject.decsInfecciones por Lentivirus
dc.subject.decsProcesamiento de imagen asistido por computador
dc.subject.meshHEK293 cells
dc.subject.meshHumans
dc.subject.meshImage processing, computer-assisted
dc.subject.meshLentivirus
dc.subject.meshLentivirus infections
dc.titleHyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC8355230.pdf
Size:
3.93 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Gomez-Gonzalez_Hyperspectral_MaterialSuplementario.docx
Size:
308.6 KB
Format:
Microsoft Word XML