Publication: Viscoelastic Biomarkers of Ex Vivo Liver Samples via Torsional Wave Elastography
Loading...
Identifiers
Date
2020-02-19
Authors
Faris, Inas H.
Melchor, Juan
Callejas, Antonio
Torres, Jorge
Rus, Guillermo
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
The clinical ultrasound community demands mechanisms to obtain the viscoelastic biomarkers of soft tissue in order to quantify the tissue condition and to be able to track its consistency. Torsional Wave Elastography (TWE) is an emerging technique proposed for interrogating soft tissue mechanical viscoelastic constants. Torsional waves are a particular configuration of shear waves, which propagate asymmetrically in-depth and are radially transmitted by a disc and received by a ring. This configuration is shown to be particularly efficient in minimizing spurious p-waves components and is sensitive to mechanical constants, especially in cylinder-shaped organs. The objective of this work was to validate (TWE) technique against Shear Wave Elasticity Imaging (SWEI) technique through the determination of shear wave velocity, shear moduli, and viscosity of ex vivo chicken liver samples and tissue mimicking hydrogel phantoms. The results of shear moduli for ex vivo liver tissue vary 1.69-4.0kPa using TWE technique and 1.32-4.48kPa using SWEI technique for a range of frequencies from 200 to 800Hz. Kelvin-Voigt viscoelastic parameters reported values of μ = 1.51kPa and η = 0.54Pa·s using TWE and μ = 1.02kPa and η = 0.63Pa·s using SWEI. Preliminary results show that the proposed technique successfully allows reconstructing shear wave velocity, shear moduli, and viscosity mechanical biomarkers from the propagated torsional wave, establishing a proof of principle and warranting further studies.
Description
MeSH Terms
Medical Subject Headings::Phenomena and Processes::Chemical Phenomena::Physicochemical Phenomena::Viscosity
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Birds::Galliformes::Chickens
Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Mechanical Phenomena::Elasticity
Medical Subject Headings::Anatomy::Digestive System::Liver
Medical Subject Headings::Chemicals and Drugs::Biological Factors::Biological Markers
Medical Subject Headings::Chemicals and Drugs::Complex Mixtures::Colloids::Gels::Hydrogels
Medical Subject Headings::Chemicals and Drugs::Chemical Actions and Uses::Specialty Uses of Chemicals::Viscoelastic Substances
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Birds::Galliformes::Chickens
Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Mechanical Phenomena::Elasticity
Medical Subject Headings::Anatomy::Digestive System::Liver
Medical Subject Headings::Chemicals and Drugs::Biological Factors::Biological Markers
Medical Subject Headings::Chemicals and Drugs::Complex Mixtures::Colloids::Gels::Hydrogels
Medical Subject Headings::Chemicals and Drugs::Chemical Actions and Uses::Specialty Uses of Chemicals::Viscoelastic Substances
DeCS Terms
CIE Terms
Keywords
ShearWave Elastography Imaging, TorsionalWave Elastography, Mechanical biomarkers, Tissue biomarkers, Kelvin–Voigt viscoelasticity, Diagnóstico por Imagen de Elasticidad, Onda S, Sustancias viscoelásticas
Citation
Faris IH, Melchor J, Callejas A, Torres J, Rus G. Viscoelastic Biomarkers of Ex Vivo Liver Samples via Torsional Wave Elastography. Diagnostics. 2020 Feb 19;10(2):111