Publication: Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival.
Loading...
Identifiers
Date
2010-10-07
Authors
Tejedo, J R
Tapia-Limonchi, R
Mora-Castilla, S
Cahuana, G M
Hmadcha, A
Martin, F
Bedoya, F J
Soria, B
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
Abstract
Nitric oxide (NO) is an intracellular messenger in several cell systems, but its contribution to embryonic stem cell (ESC) biology has not been characterized. Exposure of ESCs to low concentrations (2-20 μM) of the NO donor diethylenetriamine NO adduct confers protection from apoptosis elicited by leukaemia inhibitory factor (LIF) withdrawal. NO blocked caspase 3 activation, PARP degradation, downregulation of the pro-apoptotic genes Casp7, Casp9, Bax and Bak1 and upregulation of the anti-apoptotic genes Bcl-2 111, Bcl-2 and Birc6. These effects were also observed in cells overexpressing eNOS. Exposure of LIF-deprived mESCs to low NO prevented the loss of expression of self-renewal genes (Oct4, Nanog and Sox2) and the SSEA marker. Moreover, NO blocked the differentiation process promoted by the absence of LIF and bFGF in mouse and human ESCs. NO treatment decreased the expression of differentiation markers, such as Brachyury, Gata6 and Gata4. Constitutive overexpression of eNOS in cells exposed to LIF deprivation maintained the expression of self-renewal markers, whereas the differentiation genes were repressed. These effects were reversed by addition of the NOS inhibitor L-NMMA. Altogether, the data suggest that low NO has a role in the regulation of ESC differentiation by delaying the entry into differentiation, arresting the loss of self-renewal markers and promoting cell survival by inhibiting apoptosis.
Description
Journal Article; Research Support, Non-U.S. Gov't;
MeSH Terms
Medical Subject Headings::Chemicals and Drugs::Biological Factors::Biological Markers::Antigens, Differentiation::Antigens, CD::Antigens, CD15
Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Death::Apoptosis
Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Differentiation
Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Survival
Medical Subject Headings::Anatomy::Cells::Stem Cells::Embryonic Stem Cells
Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::DNA-Binding Proteins::Homeodomain Proteins
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Mice
Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Nitrogen Compounds::Nitrogen Oxides::Nitric Oxide
Medical Subject Headings::Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Oxidoreductases::Oxidoreductases Acting on CH-NH2 Group Donors::Amino Acid Oxidoreductases::Nitric Oxide Synthase::Nitric Oxide Synthase Type III
Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::Transcription Factors::POU Domain Factors::Octamer Transcription Factors::Octamer Transcription Factor-3
Medical Subject Headings::Chemicals and Drugs::Organic Chemicals::Amines::Polyamines
Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::Transcription Factors::SOX Transcription Factors::SOXB1 Transcription Factors
Medical Subject Headings::Organisms::Eukaryota::Animals
Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Death::Apoptosis
Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Differentiation
Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Survival
Medical Subject Headings::Anatomy::Cells::Stem Cells::Embryonic Stem Cells
Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::DNA-Binding Proteins::Homeodomain Proteins
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Mice
Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Nitrogen Compounds::Nitrogen Oxides::Nitric Oxide
Medical Subject Headings::Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Oxidoreductases::Oxidoreductases Acting on CH-NH2 Group Donors::Amino Acid Oxidoreductases::Nitric Oxide Synthase::Nitric Oxide Synthase Type III
Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::Transcription Factors::POU Domain Factors::Octamer Transcription Factors::Octamer Transcription Factor-3
Medical Subject Headings::Chemicals and Drugs::Organic Chemicals::Amines::Polyamines
Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::Transcription Factors::SOX Transcription Factors::SOXB1 Transcription Factors
Medical Subject Headings::Organisms::Eukaryota::Animals
DeCS Terms
CIE Terms
Keywords
Embryonic stem cell, Leukemia Inhibitory Factor, Differentiation, Self-renewal, Nitric Oxide, Células madre embrionarias, Factor Inhibidor de Leucemia, Diferenciación celular, Óxido Nítrico
Citation
Tejedo JR, Tapia-Limonchi R, Mora-Castilla S, Cahuana GM, Hmadcha A, Martin F, et al. Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. Cell Death Dis; 1:e80