Publication:
Predicting mortality for Covid-19 in the US using the delayed elasticity method

dc.contributor.authorHierro, Luis Ángel
dc.contributor.authorGarzón, Antonio J.
dc.contributor.authorAtienza-Montero, Pedro
dc.contributor.authorMárquez, José Luis
dc.contributor.authoraffiliation[Hierro,LA; Garzón,AJ; Atienza-Montero,P] Department of Economics and Economic History, University of Seville, Seville, Spain. [Márquez,JL] University Hospital Virgen del Rocio, Seville, Spain.
dc.date.accessioned2021-12-28T12:07:07Z
dc.date.available2021-12-28T12:07:07Z
dc.date.issued2020-11-30
dc.description.abstractThe evolution of the pandemic caused by COVID-19, its high reproductive number and the associated clinical needs, is overwhelming national health systems. We propose a method for predicting the number of deaths, and which will enable the health authorities of the countries involved to plan the resources needed to face the pandemic as many days in advance as possible. We employ OLS to perform the econometric estimation. Using RMSE, MSE, MAPE, and SMAPE forecast performance measures, we select the best lagged predictor of both dependent variables. Our objective is to estimate a leading indicator of clinical needs. Having a forecast model available several days in advance can enable governments to more effectively face the gap between needs and resources triggered by the outbreak and thus reduce the deaths caused by COVID-19.es_ES
dc.description.versionYeses_ES
dc.format.extent6 p.es_ES
dc.identifier.citationHierro LA, Garzón AJ, Atienza-Montero P, Márquez JL. Predicting mortality for Covid-19 in the US using the delayed elasticity method. Sci Rep. 2020 Nov 30;10(1):20811.es_ES
dc.identifier.doi10.1038/s41598-020-76490-8es_ES
dc.identifier.essn2045-2322
dc.identifier.pmcPMC7704650
dc.identifier.pmid33257734es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3441
dc.journal.titleScientific Reports
dc.language.isoen
dc.publisherSpringer Naturees_ES
dc.relation.publisherversionhttps://www-nature-com.bvsspa.idm.oclc.org/articles/s41598-020-76490-8#Sec1es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCOVID-19es_ES
dc.subjectForecastinges_ES
dc.subjectHealth planninges_ES
dc.subjectModels, statisticales_ES
dc.subjectHumanses_ES
dc.subjectPublic healthes_ES
dc.subjectPredicciónes_ES
dc.subjectPlanificación en saludes_ES
dc.subjectModelos estadísticoses_ES
dc.subjectHumanoses_ES
dc.subjectSalud públicaes_ES
dc.subjectMortalidades_ES
dc.subject.meshMedical Subject Headings::Diseases::Virus Diseases::RNA Virus Infections::Nidovirales Infections::Coronaviridae Infections::Coronavirus Infectionses_ES
dc.subject.meshMedical Subject Headings::Anthropology, Education, Sociology and Social Phenomena::Social Sciences::Forecastinges_ES
dc.subject.meshMedical Subject Headings::Health Care::Health Care Economics and Organizations::Health Planninges_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Health Care::Health Care Quality, Access, and Evaluation::Quality of Health Care::Health Care Evaluation Mechanisms::Statistics as Topic::Models, Statisticales_ES
dc.subject.meshMedical Subject Headings::Health Care::Environment and Public Health::Public Healthes_ES
dc.titlePredicting mortality for Covid-19 in the US using the delayed elasticity methodes_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hierro_PredictingMortalityFor.pdf
Size:
1019.58 KB
Format:
Adobe Portable Document Format
Description:
Artículo publicado