Publication:
Applying the FAIR4Health Solution to Identify Multimorbidity Patterns and Their Association with Mortality through a Frequent Pattern Growth Association Algorithm.

dc.contributor.authorCarmona-Pirez, Jonas
dc.contributor.authorPoblador-Plou, Beatriz
dc.contributor.authorPoncel-Falco, Antonio
dc.contributor.authorRochat, Jessica
dc.contributor.authorAlvarez-Romero, Celia
dc.contributor.authorMartinez-Garcia, Alicia
dc.contributor.authorAngioletti, Carmen
dc.contributor.authorAlmada, Marta
dc.contributor.authorGencturk, Mert
dc.contributor.authorSinaci, A Anil
dc.contributor.authorTernero-Vega, Jara Eloisa
dc.contributor.authorGaudet-Blavignac, Christophe
dc.contributor.authorLovis, Christian
dc.contributor.authorLiperoti, Rosa
dc.contributor.authorCosta, Elisio
dc.contributor.authorParra-Calderon, Carlos Luis
dc.contributor.authorMoreno-Juste, Aida
dc.contributor.authorGimeno-Miguel, Antonio
dc.contributor.authorPrados-Torres, Alexandra
dc.contributor.funderEuropean Union’s Horizon 2020 research and innovation programme
dc.contributor.funderCarlos III National Institute of Health
dc.contributor.funderSpanish National Health
dc.contributor.funderEuropean Regional Development Fund (FEDER)
dc.date.accessioned2023-05-03T13:55:57Z
dc.date.available2023-05-03T13:55:57Z
dc.date.issued2022-02-11
dc.description.abstractThe current availability of electronic health records represents an excellent research opportunity on multimorbidity, one of the most relevant public health problems nowadays. However, it also poses a methodological challenge due to the current lack of tools to access, harmonize and reuse research datasets. In FAIR4Health, a European Horizon 2020 project, a workflow to implement the FAIR (findability, accessibility, interoperability and reusability) principles on health datasets was developed, as well as two tools aimed at facilitating the transformation of raw datasets into FAIR ones and the preservation of data privacy. As part of this project, we conducted a multicentric retrospective observational study to apply the aforementioned FAIR implementation workflow and tools to five European health datasets for research on multimorbidity. We applied a federated frequent pattern growth association algorithm to identify the most frequent combinations of chronic diseases and their association with mortality risk. We identified several multimorbidity patterns clinically plausible and consistent with the bibliography, some of which were strongly associated with mortality. Our results show the usefulness of the solution developed in FAIR4Health to overcome the difficulties in data management and highlight the importance of implementing a FAIR data policy to accelerate responsible health research.
dc.description.versionSi
dc.identifier.citationCarmona-Pírez J, Poblador-Plou B, Poncel-Falcó A, Rochat J, Alvarez-Romero C, Martínez-García A, et al. Applying the FAIR4Health Solution to Identify Multimorbidity Patterns and Their Association with Mortality through a Frequent Pattern Growth Association Algorithm. Int J Environ Res Public Health. 2022 Feb 11;19(4):2040.
dc.identifier.doi10.3390/ijerph19042040
dc.identifier.essn1660-4601
dc.identifier.pmcPMC8872292
dc.identifier.pmid35206230
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872292/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/1660-4601/19/4/2040/pdf?version=1645683366
dc.identifier.urihttp://hdl.handle.net/10668/21032
dc.issue.number4
dc.journal.titleInternational journal of environmental research and public health
dc.journal.titleabbreviationInt J Environ Res Public Health
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.page.number10
dc.provenanceRealizada la curación de contenido 13/03/2025
dc.publisherMDPI AG
dc.pubmedtypeJournal Article
dc.pubmedtypeMulticenter Study
dc.pubmedtypeObservational Study
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDIMP/00019
dc.relation.projectID824666
dc.relation.projectIDPT20/00088
dc.relation.projectIDRD16/0001/0005
dc.relation.projectIDRD21/0016/0019
dc.relation.publisherversionhttps://www.mdpi.com/resolver?pii=ijerph19042040
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectFAIR principles
dc.subjectmortality
dc.subjectmultimorbidity
dc.subjectpathfinder case study
dc.subjectprivacy-preserving distributed data mining
dc.subjectresearch data management
dc.subject.decsInvestigación
dc.subject.decsMultimorbilidad
dc.subject.decsMortalidad
dc.subject.decsAsociación
dc.subject.decsAlgoritmos
dc.subject.decsCrecimiento
dc.subject.decsSalud pública
dc.subject.decsEnfermedad Cronica
dc.subject.meshAlgorithms
dc.subject.meshData Management
dc.subject.meshElectronic Health Records
dc.subject.meshMultimorbidity
dc.subject.meshPrivacy
dc.titleApplying the FAIR4Health Solution to Identify Multimorbidity Patterns and Their Association with Mortality through a Frequent Pattern Growth Association Algorithm.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number19
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC8872292.pdf
Size:
574.31 KB
Format:
Adobe Portable Document Format