Publication:
Applying the FAIR4Health Solution to Identify Multimorbidity Patterns and Their Association with Mortality through a Frequent Pattern Growth Association Algorithm.

Loading...
Thumbnail Image

Date

2022-02-11

Authors

Carmona-Pirez, Jonas
Poblador-Plou, Beatriz
Poncel-Falco, Antonio
Rochat, Jessica
Alvarez-Romero, Celia
Martinez-Garcia, Alicia
Angioletti, Carmen
Almada, Marta
Gencturk, Mert
Sinaci, A Anil

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG
Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

The current availability of electronic health records represents an excellent research opportunity on multimorbidity, one of the most relevant public health problems nowadays. However, it also poses a methodological challenge due to the current lack of tools to access, harmonize and reuse research datasets. In FAIR4Health, a European Horizon 2020 project, a workflow to implement the FAIR (findability, accessibility, interoperability and reusability) principles on health datasets was developed, as well as two tools aimed at facilitating the transformation of raw datasets into FAIR ones and the preservation of data privacy. As part of this project, we conducted a multicentric retrospective observational study to apply the aforementioned FAIR implementation workflow and tools to five European health datasets for research on multimorbidity. We applied a federated frequent pattern growth association algorithm to identify the most frequent combinations of chronic diseases and their association with mortality risk. We identified several multimorbidity patterns clinically plausible and consistent with the bibliography, some of which were strongly associated with mortality. Our results show the usefulness of the solution developed in FAIR4Health to overcome the difficulties in data management and highlight the importance of implementing a FAIR data policy to accelerate responsible health research.

Description

MeSH Terms

Algorithms
Data Management
Electronic Health Records
Multimorbidity
Privacy

DeCS Terms

Investigación
Multimorbilidad
Mortalidad
Asociación
Algoritmos
Crecimiento
Salud pública
Enfermedad Cronica

CIE Terms

Keywords

FAIR principles, mortality, multimorbidity, pathfinder case study, privacy-preserving distributed data mining, research data management

Citation

Carmona-Pírez J, Poblador-Plou B, Poncel-Falcó A, Rochat J, Alvarez-Romero C, Martínez-García A, et al. Applying the FAIR4Health Solution to Identify Multimorbidity Patterns and Their Association with Mortality through a Frequent Pattern Growth Association Algorithm. Int J Environ Res Public Health. 2022 Feb 11;19(4):2040.