Publication:
Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment.

dc.contributor.authorNavarini, Luca
dc.contributor.authorCaso, Francesco
dc.contributor.authorCosta, Luisa
dc.contributor.authorCurrado, Damiano
dc.contributor.authorStola, Liliana
dc.contributor.authorPerrotta, Fabio
dc.contributor.authorDelfino, Lorenzo
dc.contributor.authorSperti, Michela
dc.contributor.authorDeriu, Marco A
dc.contributor.authorRuscitti, Piero
dc.contributor.authorPavlych, Viktoriya
dc.contributor.authorCorrado, Addolorata
dc.contributor.authorDi Benedetto, Giacomo
dc.contributor.authorTasso, Marco
dc.contributor.authorCiccozzi, Massimo
dc.contributor.authorLaudisio, Alice
dc.contributor.authorLunardi, Claudio
dc.contributor.authorCantatore, Francesco Paolo
dc.contributor.authorLubrano, Ennio
dc.contributor.authorGiacomelli, Roberto
dc.contributor.authorScarpa, Raffaele
dc.contributor.authorAfeltra, Antonella
dc.date.accessioned2023-02-09T09:40:53Z
dc.date.available2023-02-09T09:40:53Z
dc.date.issued2020-08-28
dc.description.abstractThe performance of seven cardiovascular (CV) risk algorithms is evaluated in a multicentric cohort of ankylosing spondylitis (AS) patients. Performance and calibration of traditional CV predictors have been compared with the novel paradigm of machine learning (ML). A retrospective analysis of prospectively collected data from an AS cohort has been performed. The primary outcome was the first CV event. The discriminatory ability of the algorithms was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), which is like the concordance-statistic (c-statistic). Three ML techniques were considered to calculate the CV risk: support vector machine (SVM), random forest (RF), and k-nearest neighbor (KNN). Of 133 AS patients enrolled, 18 had a CV event. c-statistic scores of 0.71, 0.61, 0.66, 0.68, 0.66, 0.72, and 0.67 were found, respectively, for SCORE, CUORE, FRS, QRISK2, QRISK3, RRS, and ASSIGN. AUC values for the ML algorithms were: 0.70 for SVM, 0.73 for RF, and 0.64 for KNN. Feature analysis showed that C-reactive protein (CRP) has the highest importance, while SBP and hypertension treatment have lower importance. All of the evaluated CV risk algorithms exhibit a poor discriminative ability, except for RRS and SCORE, which showed a fair performance. For the first time, we demonstrated that AS patients do not show the traditional ones used by CV scores and that the most important variable is CRP. The present study contributes to a deeper understanding of CV risk in AS, allowing the development of innovative CV risk patient-specific models.
dc.description.versionSi
dc.identifier.citationNavarini L, Caso F, Costa L, Currado D, Stola L, Perrotta F, et al. Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment. Rheumatol Ther. 2020 Dec;7(4):867-882
dc.identifier.doi10.1007/s40744-020-00233-4
dc.identifier.issn2198-6576
dc.identifier.pmcPMC7695785
dc.identifier.pmid32939675
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695785/pdf
dc.identifier.unpaywallURLhttps://link.springer.com/content/pdf/10.1007/s40744-020-00233-4.pdf
dc.identifier.urihttp://hdl.handle.net/10668/16266
dc.issue.number4
dc.journal.titleRheumatology and therapy
dc.journal.titleabbreviationRheumatol Ther
dc.language.isoen
dc.organizationHospital Universitario Puerta del Mar
dc.organizationInstituto de Investigación e Innovación en Ciencias Biomédicas
dc.page.number867-882
dc.publisherSpringer
dc.pubmedtypeJournal Article
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40744-020-00233-4
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectAnkylosing spondylitis
dc.subjectC-reactive protein
dc.subjectCardiovascular risk
dc.subjectMachine learning
dc.subject.decsAlgoritmos
dc.subject.decsAprendizaje automático
dc.subject.decsBosques aleatorios
dc.subject.decsCalibración
dc.subject.decsCurva ROC
dc.subject.decsEspondilitis anquilosante
dc.subject.decsHipertensión
dc.subject.decsMáquina de vectores de soporte
dc.subject.decsProteína C-reactiva
dc.subject.meshROC curve
dc.subject.meshRandom forest
dc.subject.meshSupport vector machine
dc.subject.meshSpondylitis, ankylosing
dc.subject.meshC-reactive protein
dc.subject.meshCalibration
dc.subject.meshAlgorithms
dc.subject.meshMachine learning
dc.subject.meshHypertension
dc.titleCardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number7
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7695785.pdf
Size:
1014.82 KB
Format:
Adobe Portable Document Format