Publication:
Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation.

dc.contributor.authorGomez-Ramirez, Jaime
dc.contributor.authorFernandez-Blazquez, Miguel A
dc.contributor.authorGonzalez-Rosa, Javier J
dc.contributor.funderSpanish Ministry of Economy, Industry and Competitiveness (MINECO)
dc.contributor.funderEuropean Regional Development Fund through the Andalusian Ministry of Health and Families
dc.contributor.funderSpanish Ministry of Science, Innovation and Universities
dc.date.accessioned2023-05-03T13:49:05Z
dc.date.available2023-05-03T13:49:05Z
dc.date.issued2022-04-23
dc.description.abstractNormal aging is associated with changes in volumetric indices of brain atrophy. A quantitative understanding of age-related brain changes can shed light on successful aging. To investigate the effect of age on global and regional brain volumes and cortical thickness, 3514 magnetic resonance imaging scans were analyzed using automated brain segmentation and parcellation methods in elderly healthy individuals (69-88 years of age). The machine learning algorithm extreme gradient boosting (XGBoost) achieved a mean absolute error of 2 years in predicting the age of new subjects. Feature importance analysis showed that the brain-to-intracranial-volume ratio is the most important feature in predicting age, followed by the hippocampi volumes. The cortical thickness in temporal and parietal lobes showed a superior predictive value than frontal and occipital lobes. Insights from this approach that integrate model prediction and interpretation may help to shorten the current explanatory gap between chronological age and biological brain age.
dc.description.versionSi
dc.identifier.citationGómez-Ramírez J, Fernández-Blázquez MA, González-Rosa JJ. Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation. Brain Sci. 2022 Apr 29;12(5):579
dc.identifier.doi10.3390/brainsci12050579
dc.identifier.issn2076-3425
dc.identifier.pmcPMC9139275
dc.identifier.pmid35624966
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139275/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2076-3425/12/5/579/pdf?version=1651249487
dc.identifier.urihttp://hdl.handle.net/10668/20852
dc.issue.number5
dc.journal.titleBrain sciences
dc.journal.titleabbreviationBrain Sci
dc.language.isoen
dc.organizationInstituto de Investigación e Innovación en Ciencias Biomédicas
dc.page.number19
dc.publisherMDPI
dc.pubmedtypeJournal Article
dc.relation.projectIDRYC-2015-18467
dc.relation.projectIDPI-0034-2019
dc.relation.projectIDRTI2018-098762-B-C31
dc.relation.publisherversionhttps://www.mdpi.com/2076-3425/12/5/579
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectMRI
dc.subjectXGBoost
dc.subjectAge prediction
dc.subjectAging
dc.subjectBiological aging
dc.subject.decsAprendizaje automático
dc.subject.decsEncéfalo
dc.subject.decsEnvejecimiento
dc.subject.meshBrain segmentation
dc.subject.meshCortical parcellation
dc.subject.meshFeature importance
dc.subject.meshMachine learning
dc.subject.meshShapley values
dc.titlePrediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC9139275.pdf
Size:
15.98 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Gomez-Ramirez_PredictionOf_MaterialSuplementario.zip
Size:
21.79 KB
Format: