Publication:
Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants

dc.contributor.authorGontard, Lionel C.
dc.contributor.authorPizarro, Joaquín
dc.contributor.authorSanz-Peña, Borja
dc.contributor.authorLubián López, Simón P.
dc.contributor.authorBenavente-Fernández, Isabel
dc.contributor.authoraffiliation[Gontard,LC] Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Spain. [Gontard,LC; Pizarro,J] Department of Computer Engineering, University of Cádiz, Puerto Real, Spain. [Sanz-Peña,B] Department of Neurosurgery, Puerta del Mar Hospital, Cádiz, Spain. [Lubián López,SP; Benavente-Fernández,I] Department of Pediatrics (Neonatology), Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar Hospital, Cádiz, Spain. [Lubián López,SP; Benavente-Fernández,I] Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University, Cádiz, Spain. [Lubián López,SP; Benavente-Fernández,I] Foundation for the Development of Neonatal Neurology (Nene), Madrid, Spain. [Benavente-Fernández,I] Department of Maternal and Child Health and Radiology, School of Medicine, University of Cádiz, Cádiz, Spain.
dc.contributor.funderThis work was supported by the 2017 (PI0052/2017) and 2019 (ITI-0019-2019) ITI-Cadiz integrated territorial initiative for biomedical research European Regional Development Fund (ERDF) 2014–2020. Andalusian Ministry of Health and Families, Spain.
dc.date.accessioned2022-11-18T12:00:56Z
dc.date.available2022-11-18T12:00:56Z
dc.date.issued2021-01-12
dc.description.abstractTo train, evaluate, and validate the application of a deep learning framework in three-dimensional ultrasound (3D US) for the automatic segmentation of ventricular volume in preterm infants with post haemorrhagic ventricular dilatation (PHVD). We trained a 2D convolutional neural network (CNN) for automatic segmentation ventricular volume from 3D US of preterm infants with PHVD. The method was validated with the Dice similarity coefficient (DSC) and the intra-class coefficient (ICC) compared to manual segmentation. The mean birth weight of the included patients was 1233.1 g (SD 309.4) and mean gestational age was 28.1 weeks (SD 1.6). A total of 152 serial 3D US from 10 preterm infants with PHVD were analysed. 230 ventricles were manually segmented. Of these, 108 were used for training a 2D CNN and 122 for validating the methodology for automatic segmentation. The global agreement for manual versus automated measures in the validation data (n = 122) was excellent with an ICC of 0.944 (0.874-0.971). The Dice similarity coefficient was 0.8 (± 0.01). 3D US based ventricular volume estimation through an automatic segmentation software developed through deep learning improves the accuracy and reduces the processing time needed for manual segmentation using VOCAL. 3D US should be considered a promising tool to help deepen our current understanding of the complex evolution of PHVD.es_ES
dc.description.versionYeses_ES
dc.identifier.citationGontard LC, Pizarro J, Sanz-Peña B, Lubián López SP, Benavente-Fernández I. Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants. Sci Rep. 2021 Jan 12;11(1):567es_ES
dc.identifier.doi10.1038/s41598-020-80783-3es_ES
dc.identifier.essn2045-2322
dc.identifier.pmcPMC7803781
dc.identifier.pmid33436974es_ES
dc.identifier.urihttp://hdl.handle.net/10668/4363
dc.journal.titleScientific Reports
dc.language.isoen
dc.page.number13 p.
dc.publisherSpringer Naturees_ES
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-020-80783-3es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDeep learninges_ES
dc.subjectBirth weightes_ES
dc.subjectGestational agees_ES
dc.subjectPremature infantses_ES
dc.subjectConvolutional neural networkses_ES
dc.subjectUltrasonographyes_ES
dc.subjectStroke Volumees_ES
dc.subjectAprendizaje profundoes_ES
dc.subjectPeso al naceres_ES
dc.subjectEdad gestacionales_ES
dc.subjectRecien nacido prematuroes_ES
dc.subjectRed nerviosaes_ES
dc.subjectUltrasonografíaes_ES
dc.subjectVolumen sistólicoes_ES
dc.subject.meshMedical Subject Headings::Anatomy::Body Regions::Breastes_ES
dc.subject.meshMedical Subject Headings::Diseases::Pathological Conditions, Signs and Symptoms::Pathological Conditions, Anatomical::Dilatation, Pathologices_ES
dc.subject.meshMedical Subject Headings::Anatomy::Cardiovascular System::Heart::Heart Ventricleses_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Diseases::Pathological Conditions, Signs and Symptoms::Pathological Conditions, Anatomical::Hypertrophyes_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Image Processing, Computer-Assistedes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Diagnostic Imaging::Imaging, Three-Dimensionales_ES
dc.subject.meshMedical Subject Headings::Persons::Persons::Age Groups::Infant::Infant, Newbornes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Physical Examination::Body Constitution::Body Weights and Measures::Organ Sizees_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Sensitivity and Specificityes_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Software::Software Designes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Diagnostic Imaging::Ultrasonographyes_ES
dc.subject.meshMedical Subject Headings::Persons::Persons::Age Groups::Infant::Infant, Newborn::Infant, Prematurees_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Physical Examination::Body Constitution::Body Weights and Measures::Body Size::Body Weight::Birth Weightes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Physiological Phenomena::Physiological Processes::Growth and Development::Morphogenesis::Embryonic and Fetal Development::Fetal Development::Gestational Agees_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Mathematical Concepts::Neural Networks (Computer)es_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Circulatory and Respiratory Physiological Phenomena::Cardiovascular Physiological Phenomena::Hemodynamics::Cardiac Output::Stroke Volumees_ES
dc.titleAutomatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infantses_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gontard_AutomaticSegmentation.pdf
Size:
2.41 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado