Publication:
Clinical value of next generation sequencing of plasma cell-free DNA in gastrointestinal stromal tumors.

Loading...
Thumbnail Image

Date

2020-02-05

Authors

Serrano, César
Vivancos, Ana
López-Pousa, Antonio
Matito, Judit
Mancuso, Francesco M
Valverde, Claudia
Quiroga, Sergi
Landolfi, Stefania
Castro, Sandra
Dopazo, Cristina

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

Gastrointestinal stromal tumor (GIST) initiation and evolution is commonly framed by KIT/PDGFRA oncogenic activation, and in later stages by the polyclonal expansion of resistant subpopulations harboring KIT secondary mutations after the onset of imatinib resistance. Thus, circulating tumor (ct)DNA determination is expected to be an informative non-invasive dynamic biomarker in GIST patients. We performed amplicon-based next-generation sequencing (NGS) across 60 clinically relevant genes in 37 plasma samples from 18 GIST patients collected prospectively. ctDNA alterations were compared with NGS of matched tumor tissue samples (obtained either simultaneously or at the time of diagnosis) and cross-validated with droplet digital PCR (ddPCR). We were able to identify cfDNA mutations in five out of 18 patients had detectable in at least one timepoint. Overall, NGS sensitivity for detection of cell-free (cf)DNA mutations in plasma was 28.6%, showing high concordance with ddPCR confirmation. We found that GIST had relatively low ctDNA shedding, and mutations were at low allele frequencies. ctDNA was detected only in GIST patients with advanced disease after imatinib failure, predicting tumor dynamics in serial monitoring. KIT secondary mutations were the only mechanism of resistance found across 10 imatinib-resistant GIST patients progressing to sunitinib or regorafenib. ctDNA evaluation with amplicon-based NGS detects KIT primary and secondary mutations in metastatic GIST patients, particularly after imatinib progression. GIST exhibits low ctDNA shedding, but ctDNA monitoring, when positive, reflects tumor dynamics.

Description

MeSH Terms

Adult
Aged
Biomarkers, Tumor
Cell-Free Nucleic Acids
Circulating Tumor DNA
Exons
Female
Gastrointestinal Stromal Tumors
Genotype
High-Throughput Nucleotide Sequencing
Humans
Liquid Biopsy
Male
Middle Aged
Molecular Targeted Therapy
Mutation
Neoplasm Metastasis
Polymerase Chain Reaction
Prognosis
Protein Kinase Inhibitors
Tumor Burden

DeCS Terms

CIE Terms

Keywords

Circulating tumor DNA, Gastrointestinal stromal tumor, Imatinib, KIT, Liquid biopsy, PDGFRA, Regorafenib, Sarcoma, Sunitinib

Citation