Publication: Identification of Resistance to Exogenous Thyroxine in Humans.
No Thumbnail Available
Identifiers
Date
2020-07-16
Authors
Lacámara, Nerea
Lecumberri, Beatriz
Barquiel, Beatriz
Escribano, Arancha
González-Casado, Isabel
Álvarez-Escolá, Cristina
Aleixandre-Blanquer, Fernando
Morales, Francisco
Alfayate, Rocío
Bernal-Soriano, Mari Carmen
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Background: Thyroxine (T4) to triiodothyronine (T3) deiodination in the hypothalamus/pituitary is mediated by deiodinase type-2 (D2) activity. Dio2(-/-) mice show central resistance to exogenous T4. Patients with resistance to exogenous thyroxine (RETH) have not been described. The aim of this study was to identify hypothyroid patients with thyrotropin (TSH) unresponsiveness to levothyroxine (LT4) and to characterize the clinical, hormonal, and genetic features of human RETH. Methods: We investigated hypothyroid patients with elevated TSH under LT4 treatment at doses leading to clinical and/or biochemical hyperthyroidism. TSH and free T4 (fT4) were determined by chemiluminescence, and total T4, T3, and reverse T3 (rT3) by radioimmunoassay. TSH/fT4 ratio at inclusion and T3/T4, rT3/T4, and T3/rT3 ratios at follow-up were compared with those from patients with resistance to thyroid hormone (RTH) due to thyroid hormone receptor-β (THRB) mutations. DIO2, including the Ala92-D2 polymorphism, selenocysteine binding protein 2 (SECISBP2), and THRB were fully sequenced. Results: Eighteen hypothyroid patients (nine of each sex, 3-59 years) treated with LT4 showed elevated TSH (15.5 ± 4.7 mU/L; reference range [RR]: 0.4-4.5), fT4 (20.8 ± 2.4 pM; RR: 9-20.6), and TSH/fT4 ratio (0.74 ± 0.25; RR: 0.03-0.13). Despite increasing LT4 doses from 1.7 ± 1.0 to 2.4 ± 1.7 μg/kg/day, TSH remained elevated (6.9 ± 2.7 mU/L). Due to hyperthyroid symptoms, LT4 doses were reduced, and TSH increased again to 7.9 ± 3.2 mU/L. In the euthyroid/hyperthyrotropinemic state, T3/T4 and T3/rT3 ratios were decreased (9.2 ± 2.4, RR: 11.3-15.3 and 2.5 ± 1.4, RR: 7.5-8.5, respectively) whereas rT3/T4 was increased (0.6 ± 0.2; RR: 0.43-0.49), suggesting reduced T4 to T3 and increased T4 to rT3 conversion. These ratios were serum T4-independent and were not observed in RTH patients. Genetic testing was normal. The Ala92-D2 polymorphism was present in 7 of 18 patients, but the allele dose did not correlate with RETH. Conclusions: Human RETH is characterized by iatrogenic thyrotoxicosis and elevated TSH/fT4 ratio. In the euthyroid/hyperthyrotropinemic state, it is confirmed by decreased T3/T4 and T3/rT3 ratios, and elevated rT3/T4 ratio. This phenotype may guide clinicians to consider combined T4+T3 therapy in a targeted fashion. The absence of germline DIO2 mutations suggests that aberrant post-translational D2 modifications in pituitary/hypothalamus or defects in other genes regulating the T4 to T3 conversion pathway could be involved in RETH.
Description
MeSH Terms
Adult
Biomarkers
Child, Preschool
Drug Resistance
Female
Humans
Hyperthyroidism
Hypothyroidism
Iatrogenic Disease
Male
Middle Aged
Thyrotoxicosis
Thyrotropin
Thyroxine
Time Factors
Treatment Outcome
Young Adult
Biomarkers
Child, Preschool
Drug Resistance
Female
Humans
Hyperthyroidism
Hypothyroidism
Iatrogenic Disease
Male
Middle Aged
Thyrotoxicosis
Thyrotropin
Thyroxine
Time Factors
Treatment Outcome
Young Adult
DeCS Terms
CIE Terms
Keywords
RETH, T4+T3 therapy for hypothyroidism, biomarker T3/rT3 ratio, iatrogenic hyperthyroidism, iodothyronine ratios, resistance to levothyroxine, thyroid hormone metabolism