Publication:
Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation.

Loading...
Thumbnail Image

Date

2022-02-17

Authors

Silva, Bryon
Mantha, Olivier L
Schor, Johann
Pascual, Alberto
Plaçais, Pierre-Yves
Pavlowsky, Alice
Preat, Thomas

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce.

Description

MeSH Terms

Animals
Drosophila
Glucose
Ketone Bodies
Mammals
Neuroglia
Neurons
Starvation

DeCS Terms

CIE Terms

Keywords

Citation