Publication:
Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions.

Loading...
Thumbnail Image

Date

2017-02-18

Authors

Lukovic, Dunja
Diez Lloret, Andrea
Stojkovic, Petra
Rodríguez-Martínez, Daniel
Perez Arago, Maria Amparo
Rodriguez-Jimenez, Francisco Javier
González-Rodríguez, Patricia
López-Barneo, José
Sykova, Eva
Jendelova, Pavla

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217-1226.

Description

MeSH Terms

Cell Differentiation
Cell- and Tissue-Based Therapy
Cells, Cultured
Embryonic Stem Cells
Humans
Induced Pluripotent Stem Cells
Pluripotent Stem Cells

DeCS Terms

CIE Terms

Keywords

Cellular therapy, Clinical translation, Differentiation, Embryonic stem cells, Induced pluripotent stem cells, Neural differentiation, Pluripotent stem cells

Citation