Publication:
Classification Accuracy of Hepatitis C Virus Infection Outcome: Data Mining Approach.

dc.contributor.authorFrias, Mario
dc.contributor.authorMoyano, Jose M
dc.contributor.authorRivero-Juarez, Antonio
dc.contributor.authorLuna, Jose M
dc.contributor.authorCamacho, Angela
dc.contributor.authorFardoun, Habib M
dc.contributor.authorMachuca, Isabel
dc.contributor.authorAl-Twijri, Mohamed
dc.contributor.authorRivero, Antonio
dc.contributor.authorVentura, Sebastian
dc.contributor.funderFundación Progreso y Salud, Consejería de Salud de la Junta de Andalucía
dc.contributor.funderFundación para la Investigación en Salud del Instituto Carlos III
dc.contributor.funderRed de Investigación en SIDA de España ISCIII-RETIC
dc.contributor.funderEuropean Regional Development Fund
dc.contributor.funderMinisterio de Ciencia, Promoción y Universidades of Spain
dc.date.accessioned2023-02-09T10:43:12Z
dc.date.available2023-02-09T10:43:12Z
dc.date.issued2020-12-17
dc.description.abstractThe dataset from genes used to predict hepatitis C virus outcome was evaluated in a previous study using a conventional statistical methodology. The aim of this study was to reanalyze this same dataset using the data mining approach in order to find models that improve the classification accuracy of the genes studied. We built predictive models using different subsets of factors, selected according to their importance in predicting patient classification. We then evaluated each independent model and also a combination of them, leading to a better predictive model. Our data mining approach identified genetic patterns that escaped detection using conventional statistics. More specifically, the partial decision trees and ensemble models increased the classification accuracy of hepatitis C virus outcome compared with conventional methods. Data mining can be used more extensively in biomedicine, facilitating knowledge building and management of human diseases.
dc.description.sponsorshipThis work was supported by the Fundación Progreso y Salud, Consejería de Salud de la Junta de Andalucía (PI0187/2013), the Fundación para la Investigación en Salud del Instituto Carlos III (PI15/01017), the Red de Investigación en SIDA de España ISCIII-RETIC (RD16/0025/0034), the University of Cordoba and Andalusian Council of Economy, Knowledge, Business, and Universities (project 1262678-F), and the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (TIN2017-83445-P). AR is the beneficiary of Contratos para la intensificación de la actividad investigadora en el Sistema Nacional de Salud by the Ministerio de Ciencia, Promoción y Universidades of Spain (INT20-00028). ARJ and MF are recipient of postdoctoral perfection grants by the Ministerio de Ciencia, Innovación y Universidades of Spain (CP18/00111 and CD18/00091, respectively). We would like to thank Mrs Janet Dawson for revising the final manuscript.
dc.description.versionSi
dc.identifier.citationFrias M, Moyano JM, Rivero-Juarez A, Luna JM, Camacho Á, Fardoun HM, et al. Classification Accuracy of Hepatitis C Virus Infection Outcome: Data Mining Approach. J Med Internet Res. 2021 Feb 24;23(2):e18766
dc.identifier.doi10.2196/18766
dc.identifier.essn1438-8871
dc.identifier.pmcPMC7946589
dc.identifier.pmid33624609
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946589/pdf
dc.identifier.unpaywallURLhttps://www.jmir.org/2021/2/e18766/PDF
dc.identifier.urihttp://hdl.handle.net/10668/17227
dc.issue.number2
dc.journal.titleJournal of medical Internet research
dc.journal.titleabbreviationJ Med Internet Res
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.page.number10
dc.publisherJMIR Publications
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDPI0187/2013
dc.relation.projectIDPI15/01017
dc.relation.projectIDRD16/0025/0034
dc.relation.projectIDTIN2017-83445-P
dc.relation.projectIDINT20-00028
dc.relation.publisherversionhttps://www.jmir.org/2021/2/e18766/
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHIV/HCV
dc.subjectPART
dc.subjectClassification accuracy
dc.subjectData mining
dc.subjectEnsemble
dc.subject.decsAlgoritmos
dc.subject.decsHepacivirus
dc.subject.decsHumanos
dc.subject.decsMinería de datos
dc.subject.meshAlgorithms
dc.subject.meshData mining
dc.subject.meshHepacivirus
dc.subject.meshHumans
dc.titleClassification Accuracy of Hepatitis C Virus Infection Outcome: Data Mining Approach.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number23
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Frias_ClassificationAccuracy.pdf
Size:
205.77 KB
Format:
Adobe Portable Document Format