Publication:
Robocasting and Laser Micromachining of Sol-Gel Derived 3D Silica/Gelatin/β-TCP Scaffolds for Bone Tissue Regeneration.

dc.contributor.authorReyes-Peces, Maria V
dc.contributor.authorFelix, Eduardo
dc.contributor.authorMartinez-Vazquez, Francisco J
dc.contributor.authorFernandez-Montesinos, Rafael
dc.contributor.authorBomati-Miguel, Oscar
dc.contributor.authorMesa-Diaz, Maria Del Mar
dc.contributor.authorAlcantara, Rodrigo
dc.contributor.authorVilches-Perez, Jose Ignacio
dc.contributor.authorSalido, Mercedes
dc.contributor.authorDe la Rosa-Fox, Nicolas
dc.contributor.authorPiñero, Manuel
dc.contributor.authoraffiliation[Fernandez-Montesinos, Rafael] Instituto de Biomedicina de Cádiz, INIBICA, Universidad de Cádiz, 11009 Cádiz, Spain.
dc.contributor.authoraffiliation[Vilches-Perez, Jose Ignacio] Instituto de Biomedicina de Cádiz, INIBICA, Universidad de Cádiz, 11009 Cádiz, Spain.
dc.contributor.authoraffiliation[Vilches-Perez, Jose Ignacio] Instituto de Biomedicina de Cádiz, INIBICA, Universidad de Cádiz, 11009 Cádiz, Spain.
dc.contributor.funderAndalucía FEDER
dc.contributor.funderJunta de Andalucía
dc.contributor.funder2014–2020 ERDF Operational Program
dc.contributor.funderMinisterio de Ciencia, Investigación y Universidad
dc.date.accessioned2023-05-03T13:53:40Z
dc.date.available2023-05-03T13:53:40Z
dc.date.issued2022-10-07
dc.description.abstractThe design and synthesis of sol-gel silica-based hybrid materials and composites offer significant benefits to obtain innovative biomaterials with controlled porosity at the nanostructure level for applications in bone tissue engineering. In this work, the combination of robocasting with sol-gel ink of suitable viscosity prepared by mixing tetraethoxysilane (TEOS), gelatin and β-tricalcium phosphate (β-TCP) allowed for the manufacture of 3D scaffolds consisting of a 3D square mesh of interpenetrating rods, with macropore size of 354.0 ± 17.0 μm, without the use of chemical additives at room temperature. The silica/gelatin/β-TCP system underwent irreversible gelation, and the resulting gels were also used to fabricate different 3D structures by means of an alternative scaffolding method, involving high-resolution laser micromachining by laser ablation. By this way, 3D scaffolds made of 2 mm thick rectangular prisms presenting a parallel macropore system drilled through the whole thickness and consisting of laser micromachined holes of 350.8 ± 16.6-micrometer diameter, whose centers were spaced 1312.0 ± 23.0 μm, were created. Both sol-gel based 3D scaffold configurations combined compressive strength in the range of 2-3 MPa and the biocompatibility of the hybrid material. In addition, the observed Si, Ca and P biodegradation provided a suitable microenvironment with significant focal adhesion development, maturation and also enhanced in vitro cell growth. In conclusion, this work successfully confirmed the feasibility of both strategies for the fabrication of new sol-gel-based hybrid scaffolds with osteoconductive properties.
dc.description.sponsorshipAuthors acknowledge the use of instrumentation as well as the technical advice provided by the GEMA-Uex research group from Universidad de Extremadura (UNEX) with robocasting equipment, as well as SCCYT (UCA) for SEM, ICP and EA divisions as well as SCBM at the University of Cadiz. The authors would also like to thank. J. Vilches-Troya, retired Professor of Histology and Pathology of the University of Cadiz, for his expert advice and supervision, and Enrique Gallero-Rebollo for his assistance in figure design. All individuals included in this section have consented the acknowledgment
dc.description.versionSi
dc.identifier.citationReyes-Peces MV, Félix E, Martínez-Vázquez FJ, Fernández-Montesinos R, Bomati-Miguel Ó, Mesa-Díaz MDM, Alcántara R, et al. Robocasting and Laser Micromachining of Sol-Gel Derived 3D Silica/Gelatin/β-TCP Scaffolds for Bone Tissue Regeneration. Gels. 2022 Oct 7;8(10):634
dc.identifier.doi10.3390/gels8100634
dc.identifier.essn2310-2861
dc.identifier.pmcPMC9602064
dc.identifier.pmid36286135
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602064/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2310-2861/8/10/634/pdf?version=1665213504
dc.identifier.urihttp://hdl.handle.net/10668/20976
dc.issue.number10
dc.journal.titleGels
dc.language.isoen
dc.organizationInstituto de Investigación e Innovación en Ciencias Biomédicas
dc.provenance02-10-25
dc.provenanceCuración de contenido el 24/10/2024
dc.publisherMDPI
dc.pubmedtypeJournal Article
dc.relation.projectIDPI 013/017
dc.relation.projectIDTEP115
dc.relation.projectIDCTS 253
dc.relation.projectIDFEDER-UCA18_106598
dc.relation.projectIDEQC2018-004979
dc.relation.publisherversionhttps://www.mdpi.com/2310-2861/8/10/634
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject3D scaffold
dc.subjectBone tissue engineering
dc.subjectCytoskeleton
dc.subjectFocal adhesion
dc.subjectHybrid
dc.subjectLaser micromachining
dc.subjectOsteoblasts
dc.subjectRegenerative medicine
dc.subjectRobocasting
dc.subjectSol-gel ink
dc.subject.decsFosfatos
dc.subject.decsFuerza compresiva
dc.subject.decsGelatina
dc.subject.decsIngeniería de tejidos
dc.subject.decsMateriales biocompatibles
dc.subject.decsMicrotecnología
dc.subject.decsPorosidad
dc.subject.decsViscosidad
dc.subject.meshTricalcium phosphate
dc.subject.meshTissue engineering
dc.subject.meshGelatin
dc.subject.meshCompressive strength
dc.subject.meshPorosity
dc.subject.meshMicrotechnology
dc.subject.meshViscosity
dc.subject.meshBiocompatible materials
dc.titleRobocasting and Laser Micromachining of Sol-Gel Derived 3D Silica/Gelatin/β-TCP Scaffolds for Bone Tissue Regeneration.
dc.typeResearch article
dc.type.hasVersionVoR
dc.volume.number8
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9602064.pdf
Size:
5.07 MB
Format:
Adobe Portable Document Format