Publication: Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis.
dc.contributor.author | Lobato-Delgado, Barbara | |
dc.contributor.author | Priego-Torres, Blanca | |
dc.contributor.author | Sanchez-Morillo, Daniel | |
dc.contributor.authoraffiliation | [Priego-Torres, Blanca] Department of Automation Engineering, Electronics and Computer Architecture and Networks, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Biomedical Engineering and Telemedicine Research Group, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain | |
dc.contributor.authoraffiliation | [Sanchez-Morillo, Daniel] Department of Automation Engineering, Electronics and Computer Architecture and Networks, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Biomedical Engineering and Telemedicine Research Group, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain | |
dc.contributor.funder | Consejería de Salud y Familias, Junta de Andalucía | |
dc.contributor.funder | Fondo de Desarrollo Regional (FEDER) | |
dc.contributor.funder | University of Cádiz, Plan Propio UCA 2022-2023. | |
dc.date.accessioned | 2023-05-03T13:51:17Z | |
dc.date.available | 2023-05-03T13:51:17Z | |
dc.date.issued | 2022-06-30 | |
dc.description.abstract | Cancer is one of the most detrimental diseases globally. Accordingly, the prognosis prediction of cancer patients has become a field of interest. In this review, we have gathered 43 state-of-the-art scientific papers published in the last 6 years that built cancer prognosis predictive models using multimodal data. We have defined the multimodality of data as four main types: clinical, anatomopathological, molecular, and medical imaging; and we have expanded on the information that each modality provides. The 43 studies were divided into three categories based on the modelling approach taken, and their characteristics were further discussed together with current issues and future trends. Research in this area has evolved from survival analysis through statistical modelling using mainly clinical and anatomopathological data to the prediction of cancer prognosis through a multi-faceted data-driven approach by the integration of complex, multimodal, and high-dimensional data containing multi-omics and medical imaging information and by applying Machine Learning and, more recently, Deep Learning techniques. This review concludes that cancer prognosis predictive multimodal models are capable of better stratifying patients, which can improve clinical management and contribute to the implementation of personalised medicine as well as provide new and valuable knowledge on cancer biology and its progression. | |
dc.description.version | Si | |
dc.identifier.citation | Lobato-Delgado B, Priego-Torres B, Sanchez-Morillo D. Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis. Cancers (Basel). 2022 Jun 30;14(13):3215 | |
dc.identifier.doi | 10.3390/cancers14133215 | |
dc.identifier.issn | 2072-6694 | |
dc.identifier.pmc | PMC9265023 | |
dc.identifier.pmid | 35804988 | |
dc.identifier.pubmedURL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265023/pdf | |
dc.identifier.unpaywallURL | https://www.mdpi.com/2072-6694/14/13/3215/pdf?version=1656995615 | |
dc.identifier.uri | http://hdl.handle.net/10668/20906 | |
dc.issue.number | 13 | |
dc.journal.title | Cancers | |
dc.language.iso | en | |
dc.organization | Instituto de Investigación e Innovación en Ciencias Biomédicas | |
dc.page.number | 26 | |
dc.provenance | 2024-09-26 | |
dc.publisher | MDPI | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Review | |
dc.relation.projectID | PI-0032-2017 | |
dc.relation.projectID | PAIDI TIC-212 | |
dc.relation.publisherversion | https://www.mdpi.com/2072-6694/14/13/3215 | |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Artificial intelligence | |
dc.subject | Cancer | |
dc.subject | Data integration | |
dc.subject | Machine learning | |
dc.subject | Multimodal data | |
dc.subject | Patient risk stratification | |
dc.subject | Prognosis prediction | |
dc.subject | Survival analysis | |
dc.subject.decs | Análisis de supervivencia | |
dc.subject.decs | Aprendizaje automático | |
dc.subject.decs | Aprendizaje profundo | |
dc.subject.decs | Diagnóstico por imagen | |
dc.subject.decs | Medicina de precisión | |
dc.subject.decs | Multiómica | |
dc.subject.decs | Neoplasias | |
dc.subject.decs | Pronóstico | |
dc.subject.mesh | Deep learning | |
dc.subject.mesh | Multiomics | |
dc.subject.mesh | Precision medicine | |
dc.subject.mesh | Neoplasms | |
dc.subject.mesh | Machine learning | |
dc.subject.mesh | Diagnostic imaging | |
dc.subject.mesh | Prognosis | |
dc.subject.mesh | Survival analysis | |
dc.title | Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis. | |
dc.type | Research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 14 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1