Publication:
Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis.

dc.contributor.authorLobato-Delgado, Barbara
dc.contributor.authorPriego-Torres, Blanca
dc.contributor.authorSanchez-Morillo, Daniel
dc.contributor.authoraffiliation[Priego-Torres, Blanca] Department of Automation Engineering, Electronics and Computer Architecture and Networks, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Biomedical Engineering and Telemedicine Research Group, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
dc.contributor.authoraffiliation[Sanchez-Morillo, Daniel] Department of Automation Engineering, Electronics and Computer Architecture and Networks, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Biomedical Engineering and Telemedicine Research Group, Universidad de Cádiz, Puerto Real, 11519 Cádiz, Spain Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
dc.contributor.funderConsejería de Salud y Familias, Junta de Andalucía
dc.contributor.funderFondo de Desarrollo Regional (FEDER)
dc.contributor.funderUniversity of Cádiz, Plan Propio UCA 2022-2023.
dc.date.accessioned2023-05-03T13:51:17Z
dc.date.available2023-05-03T13:51:17Z
dc.date.issued2022-06-30
dc.description.abstractCancer is one of the most detrimental diseases globally. Accordingly, the prognosis prediction of cancer patients has become a field of interest. In this review, we have gathered 43 state-of-the-art scientific papers published in the last 6 years that built cancer prognosis predictive models using multimodal data. We have defined the multimodality of data as four main types: clinical, anatomopathological, molecular, and medical imaging; and we have expanded on the information that each modality provides. The 43 studies were divided into three categories based on the modelling approach taken, and their characteristics were further discussed together with current issues and future trends. Research in this area has evolved from survival analysis through statistical modelling using mainly clinical and anatomopathological data to the prediction of cancer prognosis through a multi-faceted data-driven approach by the integration of complex, multimodal, and high-dimensional data containing multi-omics and medical imaging information and by applying Machine Learning and, more recently, Deep Learning techniques. This review concludes that cancer prognosis predictive multimodal models are capable of better stratifying patients, which can improve clinical management and contribute to the implementation of personalised medicine as well as provide new and valuable knowledge on cancer biology and its progression.
dc.description.versionSi
dc.identifier.citationLobato-Delgado B, Priego-Torres B, Sanchez-Morillo D. Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis. Cancers (Basel). 2022 Jun 30;14(13):3215
dc.identifier.doi10.3390/cancers14133215
dc.identifier.issn2072-6694
dc.identifier.pmcPMC9265023
dc.identifier.pmid35804988
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265023/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2072-6694/14/13/3215/pdf?version=1656995615
dc.identifier.urihttp://hdl.handle.net/10668/20906
dc.issue.number13
dc.journal.titleCancers
dc.language.isoen
dc.organizationInstituto de Investigación e Innovación en Ciencias Biomédicas
dc.page.number26
dc.provenance2024-09-26
dc.publisherMDPI
dc.pubmedtypeJournal Article
dc.pubmedtypeReview
dc.relation.projectIDPI-0032-2017
dc.relation.projectIDPAIDI TIC-212
dc.relation.publisherversionhttps://www.mdpi.com/2072-6694/14/13/3215
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectArtificial intelligence
dc.subjectCancer
dc.subjectData integration
dc.subjectMachine learning
dc.subjectMultimodal data
dc.subjectPatient risk stratification
dc.subjectPrognosis prediction
dc.subjectSurvival analysis
dc.subject.decsAnálisis de supervivencia
dc.subject.decsAprendizaje automático
dc.subject.decsAprendizaje profundo
dc.subject.decsDiagnóstico por imagen
dc.subject.decsMedicina de precisión
dc.subject.decsMultiómica
dc.subject.decsNeoplasias
dc.subject.decsPronóstico
dc.subject.meshDeep learning
dc.subject.meshMultiomics
dc.subject.meshPrecision medicine
dc.subject.meshNeoplasms
dc.subject.meshMachine learning
dc.subject.meshDiagnostic imaging
dc.subject.meshPrognosis
dc.subject.meshSurvival analysis
dc.titleCombining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis.
dc.typeResearch article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9265023.pdf
Size:
520.48 KB
Format:
Adobe Portable Document Format