Publication:
High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia.

dc.contributor.authorChulian, Salvador
dc.contributor.authorMartinez-Rubio, Alvaro
dc.contributor.authorPerez-Garcia, Victor M
dc.contributor.authorRosa, Maria
dc.contributor.authorBlazquez Goñi, Cristina
dc.contributor.authorRodriguez Gutierrez, Juan Francisco
dc.contributor.authorHermosin-Ramos, Lourdes
dc.contributor.authorMolinos Quintana, Agueda
dc.contributor.authorCaballero-Velazquez, Teresa
dc.contributor.authorRamirez-Orellana, Manuel
dc.contributor.authorCastillo Robleda, Ana
dc.contributor.authorFernandez-Martinez, Juan Luis
dc.contributor.authoraffiliation[Chulian, Salvador] Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain
dc.contributor.authoraffiliation[Martinez-Rubio, Alvaro] Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain
dc.contributor.authoraffiliation[Rosa, Maria] Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain
dc.contributor.authoraffiliation[Blazquez Goñi, Cristina] Department of Paediatric Haematology and Oncology, 11407 Hospital de Jerez Cádiz, Spain
dc.contributor.authoraffiliation[Rodriguez Gutierrez, Juan Francisco] Department of Paediatric Haematology and Oncology, 11407 Hospital de Jerez Cádiz, Spain
dc.contributor.authoraffiliation[Hermosin-Ramos, Lourdes] Department of Paediatric Haematology and Oncology, 11407 Hospital de Jerez Cádiz, Spain
dc.contributor.authoraffiliation[Molinos Quintana, Agueda] Department of Haematology, Hospital Vírgen del Rocío, 41103 Sevilla, Spain
dc.contributor.authoraffiliation[Caballero-Velazquez, Teresa] Department of Haematology, Hospital Vírgen del Rocío/University of Sevilla, 41103 Sevilla, Spain
dc.contributor.funderFundación Española para la Ciencia y la Tecnología [UCA PR214]
dc.contributor.funderAsociación Pablo Ugarte (APU, Spain)
dc.contributor.funderJunta de Comunidades de Castilla-La Mancha [SBPLY/17/180501/000154]
dc.contributor.funderMinistery of Science and Technology, Spain [PID2019-110895RB-I00]
dc.contributor.funderInversión Territorial Integrada de la Provincia de Cádiz [ITI-0038-2019]
dc.date.accessioned2023-02-09T10:38:46Z
dc.date.available2023-02-09T10:38:46Z
dc.date.issued2020-12-23
dc.description.abstractArtificial intelligence methods may help in unveiling information that is hidden in high-dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantitative data with the potential to be used for the construction of response biomarkers. Many computational methods from the bioinformatics toolbox can be applied to these data, but they have not been exploited in their full potential in leukaemias, specifically for the case of childhood B-cell Acute Lymphoblastic Leukaemia. In this paper, we analysed flow cytometry data that were obtained at diagnosis from 56 paediatric B-cell Acute Lymphoblastic Leukaemia patients from two local institutions. Our aim was to assess the prognostic potential of immunophenotypical marker expression intensity. We constructed classifiers that are based on the Fisher's Ratio to quantify differences between patients with relapsing and non-relapsing disease. We also correlated this with genetic information. The main result that arises from the data was the association between subexpression of marker CD38 and the probability of relapse.
dc.description.sponsorshipWe would like to acknowledge the research group of Junta de Andalucía (Spain) group FQM-201 and the Mathematical Oncology Laboratory Group (MôLAB) from the University of Castilla-La Mancha.
dc.description.versionSi
dc.identifier.citationChulián S, Martínez-Rubio Á, Pérez-García VM, Rosa M, Blázquez Goñi C, Rodríguez Gutiérrez JF, et al. High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia. Cancers (Basel). 2020 Dec 23;13(1):17
dc.identifier.doi10.3390/cancers13010017
dc.identifier.issn2072-6694
dc.identifier.pmcPMC7793064
dc.identifier.pmid33374500
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793064/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2072-6694/13/1/17/pdf?version=1608697614
dc.identifier.urihttp://hdl.handle.net/10668/16863
dc.issue.number1
dc.journal.titleCancers
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationHospital Universitario Puerta del Mar
dc.organizationInstituto de Investigación e Innovación en Ciencias Biomédicas
dc.organizationHospital Universitario de Jerez de la Frontera
dc.page.number20
dc.provenance2024-09-26
dc.publisherMDPI
dc.pubmedtypeJournal Article
dc.relation.publisherversionhttps://www.mdpi.com/2072-6694/13/1/17
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAcute lymphoblastic leukaemia
dc.subjectCD38
dc.subjectFisher’s ratio
dc.subjectFlow cytometry data
dc.subjectMathematical oncology
dc.subjectPersonalised medicine
dc.subjectResponse biomarkers
dc.subject.decsBiología computacional
dc.subject.decsBiomarcadores
dc.subject.decsCitometría de flujo
dc.subject.decsInteligencia artificial
dc.subject.decsLeucemia-linfoma linfoblástico de células precursoras
dc.subject.decsNeoplasias hematológicas
dc.subject.decsProbabilidad
dc.subject.decsRecurrencia
dc.subject.meshFlow cytometry
dc.subject.meshArtificial intelligence
dc.subject.meshPrecursor celllLymphoblastic leukemia-lymphoma
dc.subject.meshRecurrence
dc.subject.meshHematologic neoplasms
dc.subject.meshComputational biology
dc.subject.meshProbability
dc.subject.meshBiomarkers
dc.titleHigh-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia.
dc.typeResearch article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC7793064.pdf
Size:
17.15 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Chulian_High-Dimensional_MaterialSuplementario.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format