Publication:
An Approach for the Customized High-Dimensional Segmentation of Remote Sensing Hyperspectral Images.

dc.contributor.authorPriego, Blanca
dc.contributor.authorDuro, Richard J
dc.contributor.authoraffiliation[Priego, Blanca] Biomedical Engineering and Telemedicine Researching Group, University of Cádiz, 11002 Cádiz, Spain Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, 11002 Cádiz, Spain
dc.contributor.funderMINECO
dc.contributor.funderMCIU of Spain
dc.contributor.funderEuropean Regional Development Funds under grants TIN2015-63646-C5-1-R
dc.contributor.funderXunta de Galicia under grant ED431C 2017/12.
dc.date.accessioned2023-01-25T13:36:09Z
dc.date.available2023-01-25T13:36:09Z
dc.date.issued2019-06-29
dc.description.abstractThis paper addresses three problems in the field of hyperspectral image segmentation: the fact that the way an image must be segmented is related to what the user requires and the application; the lack and cost of appropriately labeled reference images; and, finally, the information loss problem that arises in many algorithms when high dimensional images are projected onto lower dimensional spaces before starting the segmentation process. To address these issues, the Multi-Gradient based Cellular Automaton (MGCA) structure is proposed to segment multidimensional images without projecting them to lower dimensional spaces. The MGCA structure is coupled with an evolutionary algorithm (ECAS-II) in order to produce the transition rule sets required by MGCA segmenters. These sets are customized to specific segmentation needs as a function of a set of low dimensional training images in which the user expresses his segmentation requirements. Constructing high dimensional image segmenters from low dimensional training sets alleviates the problem of lack of labeled training images. These can be generated online based on a parametrization of the desired segmentation extracted from a set of examples. The strategy has been tested in experiments carried out using synthetic and real hyperspectral images, and it has been compared to state-of-the-art segmentation approaches over benchmark images in the area of remote sensing hyperspectral imaging.
dc.description.versionSi
dc.identifier.citationPriego B, Duro RJ. An Approach for the Customized High-Dimensional Segmentation of Remote Sensing Hyperspectral Images. Sensors (Basel). 2019 Jun 29;19(13):2887
dc.identifier.doi10.3390/s19132887
dc.identifier.essn1424-8220
dc.identifier.pmcPMC6650901
dc.identifier.pmid31261901
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650901/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/1424-8220/19/13/2887/pdf
dc.identifier.urihttp://hdl.handle.net/10668/14203
dc.issue.number13
dc.journal.titleSensors (Basel, Switzerland)
dc.language.isoen
dc.organizationInstituto de Investigación e Innovación en Ciencias Biomédicas
dc.page.number32
dc.provenance2024-09-25
dc.publisherMDPI
dc.pubmedtypeJournal Article
dc.relation.projectIDTIN2015-63646-C5-1-R
dc.relation.projectIDRTI2018-101114-B-I00
dc.relation.projectIDED431C 2017/12
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/19/13/2887
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCellular automata
dc.subjectDifferential evolution
dc.subjectEvolutionary algorithm
dc.subjectHyperspectral image classification
dc.subjectHyperspectral image segmentation
dc.subjectRemote sensing
dc.subject.decsAlgoritmos
dc.subject.decsAutómata celular
dc.subject.decsBenchmarking
dc.subject.decsImágenes hiperespectrales
dc.subject.decsTecnología de sensores remotos
dc.subject.meshBenchmarking
dc.subject.meshCellular automata
dc.subject.meshHyperspectral imaging
dc.subject.meshRemote sensing technology
dc.subject.meshAlgorithms
dc.titleAn Approach for the Customized High-Dimensional Segmentation of Remote Sensing Hyperspectral Images.
dc.typeResearch article
dc.type.hasVersionVoR
dc.volume.number19
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC6650901.pdf
Size:
20.26 MB
Format:
Adobe Portable Document Format