Publication: Novel application assigned to toluquinol: inhibition of lymphangiogenesis by interfering with VEGF-C/VEGFR-3 signalling pathway.
Loading...
Identifiers
Date
2016-03-11
Authors
Garcia-Caballero, M
Blacher, S
Paupert, J
Quesada, A R
Medina, M A
Noël, A
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Abstract
Lymphangiogenesis is an important biological process associated with the pathogenesis of several diseases, including metastatic dissemination, graft rejection, lymphoedema and other inflammatory disorders. The development of new drugs that block lymphangiogenesis has become a promising therapeutic strategy. In this study, we investigated the ability of toluquinol, a 2-methyl-hydroquinone isolated from the culture broth of the marine fungus Penicillium sp. HL-85-ALS5-R004, to inhibit lymphangiogenesis in vitro, ex vivo and in vivo. We used human lymphatic endothelial cells (LECs) to analyse the effect of toluquinol in 2D and 3D in vitro cultures and in the ex vivo mouse lymphatic ring assay. For in vivo approaches, the transgenic Fli1:eGFPy1 zebrafish, mouse ear sponges and cornea models were used. Western blotting and apoptosis analyses were carried out to search for drug targets. Toluquinol inhibited LEC proliferation, migration, tubulogenesis and sprouting of new lymphatic vessels. Furthermore, toluquinol induced apoptosis of LECs after 14 h of treatment in vitro, blocked the development of the thoracic duct in zebrafish and reduced the VEGF-C-induced lymphatic vessel formation and corneal neovascularization in mice. Mechanistically, we demonstrated that this drug attenuates VEGF-C-induced VEGFR-3 phosphorylation in a dose-dependent manner and suppresses the phosphorylation of Akt and ERK1/2. Based on these findings, we propose toluquinol as a new candidate with pharmacological potential for the treatment of lymphangiogenesis-related pathologies. Notably, its ability to suppress corneal neovascularization paves the way for applications in vascular ocular pathologies.
Description
MeSH Terms
Animals
Apoptosis
Cell proliferation
Cell survival
Dose-response relationship, drug
Endothelial cells
Female
Hydroquinones
Lymphangiogenesis
Male
Mice
Mice, inbred C57BL
Signal transduction
Structure-activity relationship
Vascular endothelial growth factor C
Vascular endothelial growth factor receptor-3
Zebrafish
Apoptosis
Cell proliferation
Cell survival
Dose-response relationship, drug
Endothelial cells
Female
Hydroquinones
Lymphangiogenesis
Male
Mice
Mice, inbred C57BL
Signal transduction
Structure-activity relationship
Vascular endothelial growth factor C
Vascular endothelial growth factor receptor-3
Zebrafish
DeCS Terms
Apoptosis
Células endoteliales
Factor C de crecimiento endotelial vascular
Hidroquinonas
Linfangiogénesis
Pez cebra
Proliferación celular
Ratones endogámicos C57BL
Supervivencia celular
Células endoteliales
Factor C de crecimiento endotelial vascular
Hidroquinonas
Linfangiogénesis
Pez cebra
Proliferación celular
Ratones endogámicos C57BL
Supervivencia celular
CIE Terms
Keywords
Apoptosis, Cell proliferation, Cell survival, Dose-response relationship, drug, Endothelial cells
Citation
García-Caballero M, Blacher S, Paupert J, Quesada AR, Medina MA, Noël A. Novel application assigned to toluquinol: inhibition of lymphangiogenesis by interfering with VEGF-C/VEGFR-3 signalling pathway. Br J Pharmacol. 2016 Jun;173(12):1966-87