RT Journal Article T1 Novel application assigned to toluquinol: inhibition of lymphangiogenesis by interfering with VEGF-C/VEGFR-3 signalling pathway. A1 Garcia-Caballero, M A1 Blacher, S A1 Paupert, J A1 Quesada, A R A1 Medina, M A A1 Noël, A K1 Apoptosis K1 Cell proliferation K1 Cell survival K1 Dose-response relationship, drug K1 Endothelial cells AB Lymphangiogenesis is an important biological process associated with the pathogenesis of several diseases, including metastatic dissemination, graft rejection, lymphoedema and other inflammatory disorders. The development of new drugs that block lymphangiogenesis has become a promising therapeutic strategy. In this study, we investigated the ability of toluquinol, a 2-methyl-hydroquinone isolated from the culture broth of the marine fungus Penicillium sp. HL-85-ALS5-R004, to inhibit lymphangiogenesis in vitro, ex vivo and in vivo. We used human lymphatic endothelial cells (LECs) to analyse the effect of toluquinol in 2D and 3D in vitro cultures and in the ex vivo mouse lymphatic ring assay. For in vivo approaches, the transgenic Fli1:eGFPy1 zebrafish, mouse ear sponges and cornea models were used. Western blotting and apoptosis analyses were carried out to search for drug targets. Toluquinol inhibited LEC proliferation, migration, tubulogenesis and sprouting of new lymphatic vessels. Furthermore, toluquinol induced apoptosis of LECs after 14 h of treatment in vitro, blocked the development of the thoracic duct in zebrafish and reduced the VEGF-C-induced lymphatic vessel formation and corneal neovascularization in mice. Mechanistically, we demonstrated that this drug attenuates VEGF-C-induced VEGFR-3 phosphorylation in a dose-dependent manner and suppresses the phosphorylation of Akt and ERK1/2. Based on these findings, we propose toluquinol as a new candidate with pharmacological potential for the treatment of lymphangiogenesis-related pathologies. Notably, its ability to suppress corneal neovascularization paves the way for applications in vascular ocular pathologies. PB Wiley YR 2016 FD 2016-03-11 LK http://hdl.handle.net/10668/9948 UL http://hdl.handle.net/10668/9948 LA en NO García-Caballero M, Blacher S, Paupert J, Quesada AR, Medina MA, Noël A. Novel application assigned to toluquinol: inhibition of lymphangiogenesis by interfering with VEGF-C/VEGFR-3 signalling pathway. Br J Pharmacol. 2016 Jun;173(12):1966-87 DS RISalud RD Apr 14, 2025