Publication:
Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals.

dc.contributor.authorRivero-Juarez, Antonio
dc.contributor.authorGuijo-Rubio, David
dc.contributor.authorTellez, Francisco
dc.contributor.authorPalacios, Rosario
dc.contributor.authorMerino, Dolores
dc.contributor.authorMacias, Juan
dc.contributor.authorFernandez, Juan Carlos
dc.contributor.authorGutierrez, Pedro Antonio
dc.contributor.authorRivero, Antonio
dc.contributor.authorHervas-Martinez, Cesar
dc.contributor.funderSpanish Ministry of Economy and Competitiveness (MINECO)
dc.contributor.funderSpanish Ministry of Education and Science
dc.contributor.funderFundación de Investigación Biomédica de Córdoba
dc.contributor.funderSpanish Ministry of Science, Promotion and Universitie
dc.date.accessioned2023-02-08T14:39:19Z
dc.date.available2023-02-08T14:39:19Z
dc.date.issued2020-01-10
dc.description.abstractSeveral European countries have established criteria for prioritising initiation of treatment in patients infected with the hepatitis C virus (HCV) by grouping patients according to clinical characteristics. Based on neural network techniques, our objective was to identify those factors for HIV/HCV co-infected patients (to which clinicians have given careful consideration before treatment uptake) that have not being included among the prioritisation criteria. This study was based on the Spanish HERACLES cohort (NCT02511496) (April-September 2015, 2940 patients) and involved application of different neural network models with different basis functions (product-unit, sigmoid unit and radial basis function neural networks) for automatic classification of patients for treatment. An evolutionary algorithm was used to determine the architecture and estimate the coefficients of the model. This machine learning methodology found that radial basis neural networks provided a very simple model in terms of the number of patient characteristics to be considered by the classifier (in this case, six), returning a good overall classification accuracy of 0.767 and a minimum sensitivity (for the classification of the minority class, untreated patients) of 0.550. Finally, the area under the ROC curve was 0.802, which proved to be exceptional. The parsimony of the model makes it especially attractive, using just eight connections. The independent variable "recent PWID" is compulsory due to its importance. The simplicity of the model means that it is possible to analyse the relationship between patient characteristics and the probability of belonging to the treated group.
dc.description.versionSi
dc.identifier.citationRivero-Juárez A, Guijo-Rubio D, Tellez F, Palacios R, Merino D, Macías J, et al. Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals. PLoS One. 2020 Jan 10;15(1):e0227188
dc.identifier.doi10.1371/journal.pone.0227188
dc.identifier.essn1932-6203
dc.identifier.pmcPMC6953863
dc.identifier.pmid31923277
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953863/pdf
dc.identifier.unpaywallURLhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0227188&type=printable
dc.identifier.urihttp://hdl.handle.net/10668/14940
dc.issue.number1
dc.journal.titlePloS one
dc.journal.titleabbreviationPLoS One
dc.language.isoen
dc.organizationHospital Universitario de Puerto Real
dc.organizationHospital Universitario Reina Sofía
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.organizationHospital Universitario Juan Ramón Jiménez
dc.organizationHospital Infanta Elena
dc.organizationHospital Universitario Virgen de la Victoria
dc.organizationHospital Universitario Regional de Málaga
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.organizationAGS - Sur de Sevilla
dc.page.number14
dc.provenanceRealizada la curación de contenido 19/02/2025
dc.publisherPublic Library of Science
dc.pubmedtypeClinical Trial
dc.pubmedtypeJournal Article
dc.pubmedtypeMulticenter Study
dc.pubmedtypeObservational Study
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDTIN2017-85887-C2-1-P FPU16/02128 PI15/01570 NO ARJ - CP18/00111
dc.relation.publisherversionhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227188
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.decsAprendizaje automatico
dc.subject.decsCoinfeccion
dc.subject.decsEstudios de seguimiento
dc.subject.decsInfecciones oportunistas relacionadas con el SIDA
dc.subject.decsRedes neurales de la computacion
dc.subject.decsVIH
dc.subject.meshAIDS-Related Opportunistic Infections
dc.subject.meshAdolescent
dc.subject.meshAdult
dc.subject.meshAged
dc.subject.meshAntiviral Agents
dc.subject.meshCoinfection
dc.subject.meshDecision Support Techniques
dc.subject.meshFemale
dc.subject.meshFollow-Up Studies
dc.subject.meshHIV
dc.subject.meshHepacivirus
dc.subject.meshHepatitis C
dc.subject.meshHumans
dc.subject.meshMachine Learning
dc.subject.meshMale
dc.subject.meshMiddle Aged
dc.subject.meshNeural Networks, Computer
dc.subject.meshProspective Studies
dc.subject.meshSpain
dc.subject.meshYoung Adult
dc.titleUsing machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC6953863.pdf
Size:
886.04 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Rivero-Juarez_UsingMachine_MaterialSuplementario.pdf
Size:
93.01 KB
Format:
Adobe Portable Document Format