Sarrió, DavidPalacios, JoséHergueta-Redondo, MartaGómez-López, GonzaloCano, AmparoMoreno-Bueno, Gema2015-01-222015-01-222009-03-03Sarrió D, Palacios J, Hergueta-Redondo M, Gómez-López G, Cano A, Moreno-Bueno G. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer. 2009; 9:74http://hdl.handle.net/10668/1794Journal Article; Research Support, Non-U.S. Gov't;BACKGROUND Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. METHODS To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. RESULTS Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. CONCLUSION E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.enCadherinasLínea Celular TumoralMovimiento CelularRegulación Neoplásica de la Expresión GénicaInvasividad NeoplásicaTranscripción GenéticaTransfecciónNeoplasias de la MamaMedical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Proteins::Glycoproteins::Membrane Glycoproteins::Cell Adhesion Molecules::CadherinsMedical Subject Headings::Anatomy::Cells::Cells, Cultured::Cell Line::Cell Line, TumorMedical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell MovementMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::Gene Expression Regulation::Gene Expression Regulation, NeoplasticMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::HumansMedical Subject Headings::Diseases::Neoplasms::Neoplastic Processes::Neoplasm InvasivenessMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::Gene Expression::Transcription, GeneticMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Genetic Techniques::Gene Transfer Techniques::TransfectionMedical Subject Headings::Diseases::Neoplasms::Neoplasms by Site::Breast NeoplasmsFunctional characterization of E- and P-cadherin in invasive breast cancer cellsresearch article19257890open access10.1186/1471-2407-9-741471-2407PMC2656544