Tabik, SGomez-Rios, AMartin-Rodriguez, J LSevillano-Garcia, IRey-Area, MCharte, DGuirado, ESuarez, J LLuengo, JValero-Gonzalez, M AGarcia-Villanova, POlmedo-Sanchez, EHerrera, F2023-02-092023-02-092020-12-04http://hdl.handle.net/10668/16580Currently, Coronavirus disease (COVID-19), one of the most infectious diseases in the 21st century, is diagnosed using RT-PCR testing, CT scans and/or Chest X-Ray (CXR) images. CT (Computed Tomography) scanners and RT-PCR testing are not available in most medical centers and hence in many cases CXR images become the most time/cost effective tool for assisting clinicians in making decisions. Deep learning neural networks have a great potential for building COVID-19 triage systems and detecting COVID-19 patients, especially patients with low severity. Unfortunately, current databases do not allow building such systems as they are highly heterogeneous and biased towards severe cases. This article is three-fold: (i) we demystify the high sensitivities achieved by most recent COVID-19 classification models, (ii) under a close collaboration with Hospital Universitario ClĂnico San Cecilio, Granada, Spain, we built COVIDGR-1.0, a homogeneous and balanced database that includes all levels of severity, from normal with Positive RT-PCR, Mild, Moderate to Severe. COVIDGR-1.0 contains 426 positive and 426 negative PA (PosteroAnterior) CXR views and (iii) we propose COVID Smart Data based Network (COVID-SDNet) methodology for improving the generalization capacity of COVID-classification models. Our approach reaches good and stable results with an accuracy of [Formula: see text], [Formula: see text], [Formula: see text] in severe, moderate and mild COVID-19 severity levels. Our approach could help in the early detection of COVID-19. COVIDGR-1.0 along with the severity level labels are available to the scientific community through this link https://dasci.es/es/transferencia/open-data/covidgr/.enCOVID-19HumansModels, TheoreticalPandemicsSARS-CoV-2COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images.research article33170789open access10.1109/JBHI.2020.30371272168-2208https://ieeexplore.ieee.org/ielx7/6221020/9281055/09254002.pdf