TY - JOUR AU - Klen, Riku AU - Purohit, Disha AU - Gomez-Huelgas, Ricardo AU - Casas-Rojo, Jose Manuel AU - Anton-Santos, Juan Miguel AU - Nuñez-Cortes, Jesus Millan AU - Lumbreras, Carlos AU - Ramos-Rincon, Jose Manuel AU - Garcia-Barrio, Noelia AU - Pedrera-Jimenez, Miguel AU - Lalueza-Blanco, Antonio AU - Martin-Escalante, Maria Dolores AU - Rivas-Ruiz, Francisco AU - Onieva-Garcia, Maria Angeles AU - Young, Pablo AU - Ramirez, Juan Ignacio AU - Titto-Omonte, Estela Edith AU - Gross-Artega, Rosmery AU - Canales-Beltran, Magdy Teresa AU - Valdez, Pascual Ruben AU - Pugliese, Florencia AU - Castagna, Rosa AU - Huespe, Ivan A AU - Boietti, Bruno AU - Pollan, Javier A AU - Funke, Nico AU - Leiding, Benjamin AU - Gomez-Varela, David PY - 2022 DO - 10.7554/eLife.75985 UR - http://hdl.handle.net/10668/21673 T2 - eLife AB - New SARS-CoV-2 variants, breakthrough infections, waning immunity, and sub-optimal vaccination rates account for surges of hospitalizations and deaths. There is an urgent need for clinically valuable and generalizable triage tools assisting the... LA - en PB - eLife Sciences Publications KW - COVID-19 KW - Computational biology KW - Human KW - Machine-learning KW - Medicine KW - Prediction KW - Systems biology KW - Triage KW - COVID-19 KW - Hospitalization KW - Hospitals KW - Humans KW - Machine Learning KW - Retrospective Studies KW - SARS-CoV-2 TI - Development and evaluation of a machine learning-based in-hospital COVID-19 disease outcome predictor (CODOP): A multicontinental retrospective study. TY - research article VL - 11 ER -