TY - JOUR AU - Rodríguez, Alejandro AU - Ruiz-Botella, Manuel AU - Martín-Loeches, Ignacio AU - Jimenez Herrera, María AU - Solé-Violan, Jordi AU - Gómez, Josep AU - Bodí, María AU - Trefler, Sandra AU - Papiol, Elisabeth AU - Díaz, Emili AU - Suberviola, Borja AU - Vallverdu, Montserrat AU - Mayor-Vázquez, Eric AU - Albaya Moreno, Antonio AU - Canabal Berlanga, Alfonso AU - Sánchez, Miguel AU - Del Valle Ortíz, María AU - Ballesteros, Juan Carlos AU - Martín Iglesias, Lorena AU - Marín-Corral, Judith AU - López Ramos, Esther AU - Hidalgo Valverde, Virginia AU - Vidaur Tello, Loreto Vidaur AU - Sancho Chinesta, Susana AU - Gonzáles de Molina, Francisco Javier AU - Herrero García, Sandra AU - Sena Pérez, Carmen Carolina AU - Pozo Laderas, Juan Carlos AU - Rodríguez García, Raquel AU - Estella, Angel AU - Ferrer, Ricard AU - COVID-19 SEMICYUC Working Group PY - 2021 DO - 10.1186/s13054-021-03487-8 UR - http://hdl.handle.net/10668/17183 T2 - Critical care (London, England) AB - The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Prospective,... LA - en KW - Machine learning KW - Phenotypes KW - Prognosis KW - Risk factors KW - Severe SARS-CoV-2 infection KW - Aged KW - COVID-19 KW - Cluster Analysis KW - Critical Illness KW - Female KW - Humans KW - Male KW - Middle Aged KW - Phenotype KW - Risk Assessment KW - Risk Factors KW - Spain TI - Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain. TY - research article VL - 25 ER -