RT Journal Article T1 The Role of Glycosyltransferases in Colorectal Cancer. A1 Fernandez-Ponce, Cecilia A1 Geribaldi-Doldan, Noelia A1 Sanchez-Gomar, Ismael A1 Quiroz, Roberto Navarro A1 Ibarra, Linda Atencio A1 Escorcia, Lorena Gomez A1 Fernandez-Cisnal, Ricardo A1 Martinez, Gustavo Aroca A1 Garcia-Cozar, Francisco A1 Quiroz, Elkin Navarro K1 Colorectal cancer (CRC) K1 Glycosylation K1 Glycosyltransferase K1 Post-translational modification AB Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), β1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-β) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell-cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells. PB MDPI YR 2021 FD 2021-05-27 LK http://hdl.handle.net/10668/17922 UL http://hdl.handle.net/10668/17922 LA en NO Fernández-Ponce C, Geribaldi-Doldán N, Sánchez-Gomar I, Quiroz RN, Ibarra LA, Escorcia LG, et al. The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci. 2021 May 30;22(11):5822 DS RISalud RD Apr 7, 2025