RT Journal Article T1 A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer. A1 Peñarando, Jon A1 Lopez-Sanchez, Laura M A1 Mena, Rafael A1 Guil-Luna, Silvia A1 Conde, Francisco A1 Hernandez, Vanessa A1 Toledano, Marta A1 Gudiño, Victoria A1 Raponi, Michela A1 Billard, Caroline A1 Villar, Carlos A1 Diaz, Cesar A1 Gomez-Barbadillo, Jose A1 De la Haba-Rodriguez, Juan A1 Myant, Kevin A1 Aranda, Enrique A1 Rodriguez-Ariza, Antonio K1 Apc K1 Mesenchymal K1 Nitric oxide K1 Stem cell K1 eNOS AB Nitric oxide (NO) has been highlighted as an important agent in cancer-related events. Although the inducible nitric oxide synthase (iNOS) isoform has received most attention, recent studies in the literature indicate that the endothelial isoenzyme (eNOS) can also modulate different tumor processes including resistance, angiogenesis, invasion, and metastasis. However, the role of eNOS in cancer stem cell (CSC) biology and mesenchymal tumors is unknown. Here, we show that eNOS was significantly upregulated in VilCre ERT2 Apc fl/+ and VilCre ERT2 Apc fl/fl mouse intestinal tissue, with intense immunostaining in hyperproliferative crypts. Similarly, the more invasive VilCre ERT2 Apc fl/+ Pten fl/+ mouse model showed an overexpression of eNOS in intestinal tumors whereas this isoform was not expressed in normal tissue. However, none of the three models showed iNOS expression. Notably, when 40 human colorectal tumors were classified into different clinically relevant molecular subtypes, high eNOS expression was found in the poor relapse-free and overall survival mesenchymal subtype, whereas iNOS was absent. Furthermore, Apc fl/fl organoids overexpressed eNOS compared with wild-type organoids and NO depletion with the scavenger carboxy-PTIO (c-PTIO) decreased the proliferation and the expression of stem-cell markers, such as Lgr5, Troy, Vav3, and Slc14a1, in these intestinal organoids. Moreover, specific NO depletion also decreased the expression of CSC-related proteins in human colorectal cancer cells such as β-catenin and Bmi1, impairing the CSC phenotype. To rule out the contribution of iNOS in this effect, we established an iNOS-knockdown colorectal cancer cell line. NO-depleted cells showed a decreased capacity to form tumors and c-PTIO treatment in vivo showed an antitumoral effect in a xenograft mouse model. Our data support that eNOS upregulation occurs after Apc loss, emerging as an unexpected potential new target in poor-prognosis mesenchymal colorectal tumors, where NO scavenging could represent an interesting therapeutic alternative to targeting the CSC subpopulation. PB BioMed Central YR 2017 FD 2017-12-14 LK http://hdl.handle.net/10668/12002 UL http://hdl.handle.net/10668/12002 LA en NO Peñarando J, López-Sánchez LM, Mena R, Guil-Luna S, Conde F, Hernández V, et al. A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer. BMC Biol. 2018 Jan 10;16(1):3 NO We would like to acknowledge the following founding sources: Instituto de Salud Carlos III through the projects PI13/00553 and PI16/01508 (co-funded by the European Regional Development Fund/European Social Fund) “Investing in your future”). ARA was funded with a researcher contract through the program “Nicolás Monardes” from Junta de Andalucia. We also acknowledge the technical help of Álvaro Jiménez and Esther Peralbo from the Genomics and Microscopy Units at the IMIBIC. DS RISalud RD Apr 14, 2025