RT Journal Article T1 Novel suturing technique, based on physical principles, achieves a breaking point double that obtained by conventional techniques. A1 Pérez Lara, Francisco Javier A1 Zubizarreta Jimenez, Rogelio A1 Moya Donoso, Francisco Javier A1 Hernández Gonzalez, Jose Manuel A1 Prieto-Puga Arjona, Tatiana A1 Marín Moya, Ricardo A1 Pitarch Martinez, Maria K1 Physical principles K1 Suture K1 Technique K1 Tension AB Sutures have been used to repair wounds since ancient times. However, the basic suture technique has not significantly changed. In Phase I of our project, we proposed a "double diabolo" suture design, using a theoretical physical study to show that this suture receives 50% less tension than conventional sutures, and so a correspondingly greater force must be applied to break it. To determine whether these theoretical levels of resistance were met by the new type of suture. An observational study was performed to compare three types of sutures, using a device that exerted force on the suture until the breaking point was reached. The tension produced by this traction was measured. The following variables were considered: Tearing stress on entry/exit points, edge separation stress, and suture break stress. The study sample consisted of 30 sutures with simple interrupted stitches (Group 1), 30 with continuous stitches (Group 2), and 30 with the "double diabolo" design (Group 3). The mean degree of force required to reach the breaking point for each of these variables (tearing, separation, and final breaking) was highest in Group 3 (14.56, 18.28, and 21.39 kg), followed by Group 1 (7.36, 10.38, and 12.81 kg) and Group 2 (5.77, 7.7, and 8.71 kg). These differences were statistically significant (P The experimental results show that with the "double diabolo" suture, compared with conventional sutures, greater force must be applied to reach the breaking point (almost twice as much as in the simple interrupted suture and more than double that required for the continuous suture). If these results are confirmed in Phase III (the clinical phase) of our study, we believe the double diabolo technique should be adopted as the standard approach, especially when the suture must withstand significant tension (e.g., laparotomy closure, thoracotomy closure, diaphragm suture, or hernial orifice closure). SN 1948-9366 YR 2021 FD 2021 LK https://hdl.handle.net/10668/26784 UL https://hdl.handle.net/10668/26784 LA en DS RISalud RD Apr 9, 2025