TY - JOUR AU - Navarini, Luca AU - Caso, Francesco AU - Costa, Luisa AU - Currado, Damiano AU - Stola, Liliana AU - Perrotta, Fabio AU - Delfino, Lorenzo AU - Sperti, Michela AU - Deriu, Marco A AU - Ruscitti, Piero AU - Pavlych, Viktoriya AU - Corrado, Addolorata AU - Di Benedetto, Giacomo AU - Tasso, Marco AU - Ciccozzi, Massimo AU - Laudisio, Alice AU - Lunardi, Claudio AU - Cantatore, Francesco Paolo AU - Lubrano, Ennio AU - Giacomelli, Roberto AU - Scarpa, Raffaele AU - Afeltra, Antonella PY - 2020 DO - 10.1007/s40744-020-00233-4 SN - 2198-6576 UR - http://hdl.handle.net/10668/16266 T2 - Rheumatology and therapy AB - The performance of seven cardiovascular (CV) risk algorithms is evaluated in a multicentric cohort of ankylosing spondylitis (AS) patients. Performance and calibration of traditional CV predictors have been compared with the novel paradigm of machine... LA - en PB - Springer KW - Ankylosing spondylitis KW - C-reactive protein KW - Cardiovascular risk KW - Machine learning KW - ROC curve KW - Random forest KW - Support vector machine KW - Spondylitis, ankylosing KW - C-reactive protein KW - Calibration KW - Algorithms KW - Machine learning KW - Hypertension TI - Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment. TY - research article VL - 7 ER -