RT Journal Article T1 Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants A1 Gontard, Lionel C. A1 Pizarro, Joaquín A1 Sanz-Peña, Borja A1 Lubián López, Simón P. A1 Benavente-Fernández, Isabel K1 Deep learning K1 Birth weight K1 Gestational age K1 Premature infants K1 Convolutional neural networks K1 Ultrasonography K1 Stroke Volume K1 Aprendizaje profundo K1 Peso al nacer K1 Edad gestacional K1 Recien nacido prematuro K1 Red nerviosa K1 Ultrasonografía K1 Volumen sistólico AB To train, evaluate, and validate the application of a deep learning framework in three-dimensional ultrasound (3D US) for the automatic segmentation of ventricular volume in preterm infants with post haemorrhagic ventricular dilatation (PHVD). We trained a 2D convolutional neural network (CNN) for automatic segmentation ventricular volume from 3D US of preterm infants with PHVD. The method was validated with the Dice similarity coefficient (DSC) and the intra-class coefficient (ICC) compared to manual segmentation. The mean birth weight of the included patients was 1233.1 g (SD 309.4) and mean gestational age was 28.1 weeks (SD 1.6). A total of 152 serial 3D US from 10 preterm infants with PHVD were analysed. 230 ventricles were manually segmented. Of these, 108 were used for training a 2D CNN and 122 for validating the methodology for automatic segmentation. The global agreement for manual versus automated measures in the validation data (n = 122) was excellent with an ICC of 0.944 (0.874-0.971). The Dice similarity coefficient was 0.8 (± 0.01). 3D US based ventricular volume estimation through an automatic segmentation software developed through deep learning improves the accuracy and reduces the processing time needed for manual segmentation using VOCAL. 3D US should be considered a promising tool to help deepen our current understanding of the complex evolution of PHVD. PB Springer Nature YR 2021 FD 2021-01-12 LK http://hdl.handle.net/10668/4363 UL http://hdl.handle.net/10668/4363 LA en NO Gontard LC, Pizarro J, Sanz-Peña B, Lubián López SP, Benavente-Fernández I. Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants. Sci Rep. 2021 Jan 12;11(1):567 DS RISalud RD Feb 18, 2025