TY - JOUR AU - De-Brouwer, Edward AU - Becker, Thijs AU - Moreau, Yves AU - Havrdova, Eva Kubala AU - Trojano, Maria AU - Eichau, Sara AU - Ozakbas, Serkan AU - Onofrj, Marco AU - Grammond, Pierre AU - Kuhle, Jens AU - Kappos, Ludwig AU - Sola, Patrizia AU - Cartechini, Elisabetta AU - Lechner-Scott, Jeannette AU - Alroughani, Raed AU - Gerlach, Oliver AU - Kalincik, Tomas AU - Granella, Franco AU - Grand'Maison, Francois AU - Bergamaschi, Roberto AU - Sa, Maria Jose AU - Van-Wijmeersch, Bart AU - Soysal, Aysun AU - Sanchez-Menoyo, Jose Luis AU - Solaro, Claudio AU - Boz, Cavit AU - Iuliano, Gerardo AU - Buzzard, Katherine AU - Aguera-Morales, Eduardo AU - Terzi, Murat AU - Trivio, Tamara Castillo AU - Spitaleri, Daniele AU - Van-Pesch, Vincent AU - Shaygannejad, Vahid AU - Moore, Fraser AU - Oreja-Guevara, Celia AU - Maimone, Davide AU - Gouider, Riadh AU - Csepany, Tunde AU - Ramo-Tello, Cristina AU - Peeters, Liesbet PY - 2021 DO - 10.1016/j.cmpb.2021.106479 UR - http://hdl.handle.net/10668/22137 T2 - Computer methods and programs in biomedicine AB - Background and objectives: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more... LA - en PB - Elsevier KW - Disability progression KW - Electronic health records KW - Longitudinal data KW - Multiple sclerosis KW - Real-world data KW - Recurrent neural networks KW - Precision Medicine KW - Neural Networks, Computer KW - Machine Learning KW - Disease Progression KW - Information Sources TI - Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180]. TY - research article VL - 213 ER -