RT Journal Article T1 Corrigendum to Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180]. A1 De Brouwer, Edward A1 Becker, Thijs A1 Moreau, Yves A1 Havrdova, Eva Kubala A1 Trojano, Maria A1 Eichau, Sara A1 Ozakbas, Serkan A1 Onofrj, Marco A1 Grammond, Pierre A1 Kuhle, Jens A1 Kappos, Ludwig A1 Sola, Patrizia A1 Cartechini, Elisabetta A1 Lechner-Scott, Jeannette A1 Alroughani, Raed A1 Gerlach, Oliver A1 Kalincik, Tomas A1 Granella, Franco A1 Grand'Maison, Francois A1 Bergamaschi, Roberto A1 Sá, Maria José A1 Van Wijmeersch, Bart A1 Soysal, Aysun A1 Sanchez-Menoyo, Jose Luis A1 Solaro, Claudio A1 Boz, Cavit A1 Iuliano, Gerardo A1 Buzzard, Katherine A1 Aguera-Morales, Eduardo A1 Terzi, Murat A1 Trivio, Tamara Castillo A1 Spitaleri, Daniele A1 Van Pesch, Vincent A1 Shaygannejad, Vahid A1 Moore, Fraser A1 Oreja-Guevara, Celia A1 Maimone, Davide A1 Gouider, Riadh A1 Csepany, Tunde A1 Ramo-Tello, Cristina A1 Peeters, Liesbet YR 2021 FD 2021-11-05 LK http://hdl.handle.net/10668/22137 UL http://hdl.handle.net/10668/22137 LA en DS RISalud RD Apr 19, 2025