%0 Journal Article %A De Brouwer, Edward %A Becker, Thijs %A Moreau, Yves %A Havrdova, Eva Kubala %A Trojano, Maria %A Eichau, Sara %A Ozakbas, Serkan %A Onofrj, Marco %A Grammond, Pierre %A Kuhle, Jens %A Kappos, Ludwig %A Sola, Patrizia %A Cartechini, Elisabetta %A Lechner-Scott, Jeannette %A Alroughani, Raed %A Gerlach, Oliver %A Kalincik, Tomas %A Granella, Franco %A Grand'Maison, Francois %A Bergamaschi, Roberto %A Sá, Maria José %A Van Wijmeersch, Bart %A Soysal, Aysun %A Sanchez-Menoyo, Jose Luis %A Solaro, Claudio %A Boz, Cavit %A Iuliano, Gerardo %A Buzzard, Katherine %A Aguera-Morales, Eduardo %A Terzi, Murat %A Trivio, Tamara Castillo %A Spitaleri, Daniele %A Van Pesch, Vincent %A Shaygannejad, Vahid %A Moore, Fraser %A Oreja-Guevara, Celia %A Maimone, Davide %A Gouider, Riadh %A Csepany, Tunde %A Ramo-Tello, Cristina %A Peeters, Liesbet %T Corrigendum to Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression: [Computer Methods and Programs in Biomedicine, Volume 208, (September 2021) 106180]. %D 2021 %U http://hdl.handle.net/10668/22137 %~