TY - JOUR AU - Saez, Jose A. AU - Romero-Bejar, Jose L. PY - 2022 DO - 10.3390/math10111892 UR - http://hdl.handle.net/10668/21411 T2 - Mathematics AB - Real-world classification data usually contain noise, which can affect the accuracy of the models and their complexity. In this context, an interesting approach to reduce the effects of noise is building ensembles of classifiers, which traditionally... LA - en PB - Mdpi KW - borderline noise KW - label noise KW - bagging KW - ensembles KW - robust learners KW - classification KW - Nonparametric statistical tests KW - Complexity-measures KW - Decision trees KW - Classification KW - Machine KW - Model KW - Classifiers KW - Ranking KW - Robust KW - Algorithms TI - On the Suitability of Bagging-Based Ensembles with Borderline Label Noise TY - research article VL - 10 ER -