RT Journal Article T1 A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. A1 Dominguez-Garcia, Samuel A1 Geribaldi-Doldan, Noelia A1 Gomez-Oliva, Ricardo A1 Ruiz, Felix A A1 Carrascal, Livia A1 Bolivar, Jorge A1 Verastegui, Cristina A1 Garcia-Alloza, Monica A1 Macias-Sanchez, Antonio J A1 Hernandez-Galan, Rosario A1 Nunez-Abades, Pedro A1 Castro, Carmen K1 Animals K1 Brain injuries K1 Cell differentiation AB Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration. PB Nature Publishing Group YR 2020 FD 2020-04-03 LK http://hdl.handle.net/10668/15415 UL http://hdl.handle.net/10668/15415 LA en NO Domínguez-García S, Geribaldi-Doldán N, Gómez-Oliva R, Ruiz FA, Carrascal L, Bolívar J, et al. A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. Cell Death Dis. 2020 Apr 22;11(4):262 NO We dedicate this paper to our late colleague and friend, Dr. Maribel MurilloCarretero, whose dedication and critical advice was very valuable to this work. This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant Numbers RTI2018–099908-B-C21, and RTI2018–099908-BC21 MICINN/FEDER granted to CC and RHG respectively and BFU2016–75038R granted to MGA) and Consejería de Economía, Conocimiento, Empresas y Universidades Junta de Andalucía (grant number FEDER-ANDALUCÍA sol2018–00106647-tra). We thank Antonio Torres for his technical assistance. We thank the Servicio de experimentación y producción animal (SEPA) de la Universidad de Cádiz as well as the Servicios Centrales de apoyo a la investigación en Ciencias de la Salud (SCICS) and Servicios centrales de Ciencia y tecnología (SC-ICYT) de la Universidad de Cádiz. We appreciate the assistance provided by Juan Luis Ribas and Modesto Carballo of the Servicio de Microscopia y Biología, respectively, of the Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS). DS RISalud RD Apr 17, 2025