TY - JOUR AU - Taylor-Weiner, Amaro AU - Pokkalla, Harsha AU - Han, Ling AU - Jia, Catherine AU - Huss, Ryan AU - Chung, Chuhan AU - Elliott, Hunter AU - Glass, Benjamin AU - Pethia, Kishalve AU - Carrasco-Zevallos, Oscar AU - Shukla, Chinmay AU - Khettry, Urmila AU - Najarian, Robert AU - Taliano, Ross AU - Subramanian, G Mani AU - Myers, Robert P AU - Wapinski, Ilan AU - Khosla, Aditya AU - Resnick, Murray AU - Montalto, Michael C AU - Anstee, Quentin M AU - Wong, Vincent Wai-Sun AU - Trauner, Michael AU - Lawitz, Eric J AU - Harrison, Stephen A AU - Okanoue, Takeshi AU - Romero-Gomez, Manuel AU - Goodman, Zachary AU - Loomba, Rohit AU - Beck, Andrew H AU - Younossi, Zobair M PY - 2021 DO - 10.1002/hep.31750 UR - http://hdl.handle.net/10668/17146 T2 - Hepatology (Baltimore, Md.) AB - Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools... LA - en KW - Biopsy KW - Deep Learning KW - Humans KW - Image Processing, Computer-Assisted KW - Liver KW - Liver Cirrhosis KW - Non-alcoholic Fatty Liver Disease KW - Randomized Controlled Trials as Topic KW - Reproducibility of Results KW - Severity of Illness Index TI - A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. TY - research article VL - 74 ER -