TY - JOUR AU - Medina Quero, Javier AU - Lopez Medina, Miguel Angel AU - Salguero Hidalgo, Alberto AU - Espinilla, Macarena PY - 2018 DO - 10.1109/ACCESS.2018.2828652 SN - 2169-3536 UR - http://hdl.handle.net/10668/18966 T2 - Ieee access AB - Predicting the urgency demand of patients at health centers in smart cities supposes a challenge for adapting emergency service in advance. In this paper, we propose a methodology to predict the number of cases of chronic obstructive pulmonary disease... LA - en PB - Ieee-inst electrical electronics engineers inc KW - Predicting urgency demand KW - long short-term memory KW - temporal aggregation KW - fuzzy linguistic approach KW - Obstructive pulmonary-disease KW - Linguistic term sets KW - Hospital admissions KW - City KW - Pollen TI - Predicting the Urgency Demand of COPD Patients From Environmental Sensors Within Smart Cities With High-Environmental Sensitivity TY - research article VL - 6 ER -