RT Journal Article T1 Dysfunction in the Cystic Fibrosis Transmembrane Regulator in Chronic Obstructive Pulmonary Disease as a Potential Target for Personalised Medicine. A1 Carrasco-Hernández, Laura A1 Quintana-Gallego, Esther A1 Calero, Carmen A1 Reinoso-Arija, Rocío A1 Ruiz-Duque, Borja A1 López-Campos, José Luis K1 CFTR modulators K1 COPD K1 cystic fibrosis transmembrane conductance regulator K1 icenticaftor K1 ivacaftor AB In recent years, numerous pathways were explored in the pathogenesis of COPD in the quest for new potential therapeutic targets for more personalised medical care. In this context, the study of the cystic fibrosis transmembrane conductance regulator (CFTR) began to gain importance, especially since the advent of the new CFTR modulators which had the potential to correct this protein's dysfunction in COPD. The CFTR is an ion transporter that regulates the hydration and viscosity of mucous secretions in the airway. Therefore, its abnormal function favours the accumulation of thicker and more viscous secretions, reduces the periciliary layer and mucociliary clearance, and produces inflammation in the airway, as a consequence of a bronchial infection by both bacteria and viruses. Identifying CFTR dysfunction in the context of COPD pathogenesis is key to fully understanding its role in the complex pathophysiology of COPD and the potential of the different therapeutic approaches proposed to overcome this dysfunction. In particular, the potential of the rehydration of mucus and the role of antioxidants and phosphodiesterase inhibitors should be discussed. Additionally, the modulatory drugs which enhance or restore decreased levels of the protein CFTR were recently described. In particular, two CFTR potentiators, ivacaftor and icenticaftor, were explored in COPD. The present review updated the pathophysiology of the complex role of CFTR in COPD and the therapeutic options which could be explored. SN 2227-9059 YR 2021 FD 2021-10-10 LK https://hdl.handle.net/10668/27930 UL https://hdl.handle.net/10668/27930 LA en DS RISalud RD Apr 7, 2025