RT Journal Article T1 Transcriptional and Epigenetic Response to Sedentary Behavior and Physical Activity in Children and Adolescents: A Systematic Review. A1 Plaza-Florido, Abel A1 Perez-Prieto, Inmaculada A1 Molina-Garcia, Pablo A1 Radom-Aizik, Shlomit A1 Ortega, Francisco B A1 Altmäe, Signe K1 RNA-seq K1 epigenomics K1 exercise K1 methylation K1 omics K1 physical fitness AB The links of sedentary behavior and physical activity with health outcomes in children and adolescents is well known. However, the molecular mechanisms involved are poorly understood. We aimed to synthesize the current knowledge of the association of sedentary behavior and physical activity (acute and chronic effects) with gene expression and epigenetic modifications in children and adolescents. PubMed, Web of Science, and Scopus databases were systematically searched until April 2022. A total of 15 articles were eligible for this review. The risk of bias assessment was performed using the Joanna Briggs Institute Critical Appraisal Tool for Systematic Reviews and/or a modified version of the Downs and Black checklist. Thirteen studies used candidate gene approach, while only 2 studies performed high-throughput analyses. The candidate genes significantly linked to sedentary behavior or physical activity were: FOXP3, HSD11B2, IL-10, TNF-α, ADRB2, VEGF, HSP70, SOX, and GPX. Non-coding Ribonucleic acids (RNAs) regulated by sedentary behavior or physical activity were: miRNA-222, miRNA-146a, miRNA-16, miRNA-126, miR-320a, and long non-coding RNA MALAT1. These molecules are involved in inflammation, immune function, angiogenic process, and cardiovascular disease. Transcriptomics analyses detected thousands of genes that were altered following an acute bout of physical activity and are linked to gene pathways related to immune function, apoptosis, and metabolic diseases. The evidence found to date is rather limited. Multidisciplinary studies are essential to characterize the molecular mechanisms in response to sedentary behavior and physical activity in the pediatric population. Larger cohorts and randomized controlled trials, in combination with multi-omics analyses, may provide the necessary data to bring the field forward. PB Frontiers Research Foundation SN 2296-2360 YR 2022 FD 2022-06-02 LK http://hdl.handle.net/10668/20694 UL http://hdl.handle.net/10668/20694 LA en NO Plaza-Florido A, Pérez-Prieto I, Molina-Garcia P, Radom-Aizik S, Ortega FB, Altmäe S. Transcriptional and Epigenetic Response to Sedentary Behavior and Physical Activity in Children and Adolescents: A Systematic Review. Front Pediatr. 2022 Jun 24;10:917152. NO The project was funded by the Spanish Ministry of Economy and Competitiveness (Reference DEP2013-47540, DEP2016-79512-R, and DEP2017-91544-EXP); the European Regional Development Fund (FEDER): grants RYC-2016-21199 and ENDORE SAF2017-87526-R. AP-F and IP-P were supported by the Spanish Ministry of Education, Culture and Sport (FPU 16/02760; FPU19/05561). SA was supported by NIH UO1 TR002004 and PERC Systems Biology Fund. This research was partly funded by Huawei Technologies, Finland. Additional support was obtained from the EXERNET Research Network on Exercise and Health (DEP2005- 00046/ACTI; 09/UPB/19; 45/UPB/20; 27/UPB/21); Alicia Koplowitz Foundation. This study has been partially funded by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES), and by the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades and European Regional Development Fund (ERDF), ref. SOMM17/6107/UGR. Additional funding was obtained from the Andalusian Operational Program supported with European Regional Development Funds (FEDER) projects ref: B-CTS-355,UGR18, B-CTS-500-UGR18 and A-CTS-614-UGR20; and the Junta de Andalucía (PAIDI P20_00158). The Estonian Research Council (grant PRG1076); the European Commission and Enterprise Estonia (grant EU48695). DS RISalud RD Apr 17, 2025