%0 Journal Article %A Milian-Linares, M. Carmen %A Lemus-Conejo, Ana %A Mar-Yust, M. %A Pedroche, Justo %A Carrillo-Vico, Antonio %A Milian, Francisco %A Montserrat-de-la-Paz, Sergio %T GPETAFLR, a novel bioactive peptide from Lupinus angustifolius L. protein hydrolysate, reduces osteoclastogenesis %D 2018 %@ 1756-4646 %U http://hdl.handle.net/10668/18818 %X The effect of GPETAFLR, a peptide isolated from Lupinus angustifolius L. protein hydrolysate (LPH), on osteoclastogenesis was investigated. Human osteoclasts generated from monocytes were used to analyse the effects of GPETAFLR (50-100 mu g/mL) on osteoclastogenesis using TRAP reaction, RT-qPCR, and ELISA procedures. LPS enhanced TRAP activity and the expression of osteoclast marker genes (TRAP, OSCAR, RANK, and CATHK) while downregulated the expression of OPG gene in human monocyte-derived osteoclasts. These effects were reduced with GPETAFLR. Moreover, LPS increased the release of osteoclastogenic cytokines (TNF-alpha, IL-1 beta and IL-6) meanwhile GPETAFLR increased the release of anti-osteoclastogenic cytokines (IL-4 and IL-10) in the medium of human monocyte-derived osteoclasts. For the first time, we show that plant peptides from lupine protein hydrolysates have anti-osteoclastogenic activity. These exciting findings open opportunities for developing nutritional strategies with Lupinus angustifolius L. as dietary source of plant proteins, notably GPETAFLR, to prevent development and progression of osteoclast-related diseases. %K Peptide %K Protein hydrolysate %K Lupine %K Osteoclast %K Osteoporosis %K Bone %K Osteoporosis %K Inhibition %K Rankl/opg %K Pathway %~