TY - JOUR AU - Lakhani, Paras AU - Mongan, J AU - Singhal, C AU - Zhou, Q AU - Andriole, K P AU - Auffermann, W F AU - Prasanna, P M AU - Pham, T X AU - Peterson, Michael AU - Bergquist, P J AU - Cook, T S AU - Ferraciolli, S F AU - Corradi, G C A AU - Takahashi, M S AU - Workman, C S AU - Parekh, M AU - Kamel, S I AU - Galant, J AU - Mas-Sanchez, A AU - Benítez, E C AU - Sánchez-Valverde, M AU - Jaques, L AU - Panadero, M AU - Vidal, M AU - Culiañez-Casas, M AU - Angulo-Gonzalez, D AU - Langer, S G AU - de la Iglesia-Vayá, María AU - Shih, G PY - 2022 DO - 10.1007/s10278-022-00706-8 UR - http://hdl.handle.net/10668/20430 T2 - Journal of digital imaging AB - We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence challenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an international... LA - en KW - Artificial Intelligence KW - COVID-19 KW - Machine Learning KW - Pneumonia KW - Radiography KW - Thorax KW - Humans KW - COVID-19 KW - Artificial Intelligence KW - Radiography KW - Machine Learning KW - Radiologists KW - Radiography, Thoracic TI - The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs. TY - research article VL - 36 ER -