TY - JOUR AU - Chulián, Salvador AU - Martínez-Rubio, Álvaro AU - Pérez-García, Víctor M AU - Rosa, María AU - Blázquez Goñi, Cristina AU - Rodríguez Gutiérrez, Juan Francisco AU - Hermosín-Ramos, Lourdes AU - Molinos Quintana, Águeda AU - Caballero-Velázquez, Teresa AU - Ramírez-Orellana, Manuel AU - Castillo Robleda, Ana AU - Fernández-Martínez, Juan Luis PY - 2020 DO - 10.3390/cancers13010017 SN - 2072-6694 UR - https://hdl.handle.net/10668/25117 T2 - Cancers AB - Artificial intelligence methods may help in unveiling information that is hidden in high-dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantitative data with the potential to be used for the construction... LA - en KW - Acute Lymphoblastic Leukaemia KW - CD38 KW - Fisher’s Ratio KW - flow cytometry data KW - mathematical oncology KW - personalised medicine KW - response biomarkers TI - High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia. TY - research article VL - 13 ER -