TY - JOUR AU - Marcos-Zambrano, Laura Judith AU - Karaduzovic-Hadziabdic, Kanita AU - Loncar Turukalo, Tatjana AU - Przymus, Piotr AU - Trajkovik, Vladimir AU - Aasmets, Oliver AU - Berland, Magali AU - Gruca, Aleksandra AU - Hasic, Jasminka AU - Hron, Karel AU - Klammsteiner, Thomas AU - Kolev, Mikhail AU - Lahti, Leo AU - Lopes, Marta B AU - Moreno, Victor AU - Naskinova, Irina AU - Org, Elin AU - Paciência, Inês AU - Papoutsoglou, Georgios AU - Shigdel, Rajesh AU - Stres, Blaz AU - Vilne, Baiba AU - Yousef, Malik AU - Zdravevski, Eftim AU - Tsamardinos, Ioannis AU - Carrillo de Santa Pau, Enrique AU - Claesson, Marcus J AU - Moreno-Indias, Isabel AU - Truu, Jaak PY - 2021 DO - 10.3389/fmicb.2021.634511 SN - 1664-302X UR - https://hdl.handle.net/10668/26927 T2 - Frontiers in microbiology AB - The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the... LA - en KW - biomarker identification KW - disease prediction KW - feature selection KW - machine learning KW - microbiome TI - Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. TY - research article VL - 12 ER -