TY - JOUR AU - Gorriz, J. M. AU - Martin-Clemente, R. AU - Puntonet, C. G. AU - Ortiz, A. AU - Ramirez, J. AU - Suckling, J. PY - 2022 DO - 10.1016/j.neucom.2022.09.001 SN - 0925-2312 UR - http://hdl.handle.net/10668/22421 T2 - Neurocomputing AB - There remains an open question about the usefulness and the interpretation of machine learning (ML) approaches for discrimination of spatial patterns of brain images between samples or activation states. In the last few decades, these approaches have... LA - en PB - Elsevier BV KW - General Linear Model KW - Linear Regression Model KW - Support Vector Regression KW - permutation tests KW - Magnetic Resonance Imaging KW - Random Field Theory KW - Support vector machine KW - Functional mri KW - Diagnosis KW - Framework KW - Linear Models KW - Benchmarking KW - Research Design KW - Brain KW - Machine Learning TI - A hypothesis-driven method based on machine learning for neuroimaging data analysis TY - research article VL - 510 ER -