RT Journal Article T1 Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study A1 Laine, Jessica E. A1 Huybrechts, Inge A1 Gunter, Marc J. A1 Ferrari, Pietro A1 Weiderpass, Elisabete A1 Tsilidis, Kostas A1 Aune, Dagfinn A1 Schulze, Matthias B. A1 Bergmann, Manuela A1 Temme, Elisabeth H. M. A1 Boer, Jolanda M. A. A1 Agnoli, Claudia A1 Ericson, Ulrika A1 Stubbendorff, Anna A1 Ibsen, Daniel B. A1 Dahm, Christina Catherine A1 Deschasaux, Melanie A1 Touvier, Mathilde A1 Kesse-Guyot, Emmanuelle A1 Perez, Maria-Jose Sanchez A1 Barranco, Miguel Rodriguez A1 Tong, Tammy Y. N. A1 Papier, Keren A1 Knuppel, Anika A1 Boutron-Ruault, Marie-Christine A1 Mancini, Francesca A1 Severi, Gianluca A1 Srour, Bernard A1 Kuhn, Tilman A1 Masala, Giovanna A1 Agudo, Antonio A1 Skeie, Guri A1 Rylander, Charlotta A1 Sandanger, Torkjel M. A1 Riboli, Elio A1 Vineis, Paolo K1 Processed meat consumption K1 Nutritional quality K1 Impacts K1 Strategies K1 Emission K1 Disease K1 Risk K1 Red AB Background Unhealthy diets, the rise of non-communicable diseases, and the declining health of the planet are highly intertwined, where food production and consumption are major drivers of increases in greenhouse gas emissions, substantial land use, and adverse health such as cancer and mortality. To assess the potential co-benefits from shifting to more sustainable diets, we aimed to investigate the associations of dietary greenhouse gas emissions and land use with all-cause and cause-specific mortality and cancer incidence rates.Methods Using data from 443 991 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, a multicentre prospective cohort, we estimated associations between dietary contributions to greenhouse gas emissions and land use and all-cause and cause-specific mortality and incident cancers using Cox proportional hazards regression models. The main exposures were modelled as quartiles. Co-benefits, encompassing the potential effects of alternative diets on all-cause mortality and cancer and potential reductions in greenhouse gas emissions and land use, were estimated with counterfactual attributable fraction intervention models, simulating potential effects of dietary shifts based on the EAT-Lancet reference diet.Findings In the pooled analysis, there was an association between levels of dietary greenhouse gas emissions and all-cause mortality (adjusted hazard ratio [HR] 1.13 [95% CI 1.10-1.16]) and between land use and all-cause mortality (1.18 [1.15-1.21]) when comparing the fourth quartile to the first quartile. Similar associations were observed for cause-specific mortality. Associations were also observed between all-cause cancer incidence rates and greenhouse gas emissions, when comparing the fourth quartile to the first quartile (adjusted HR 1.11 [95% CI 1.09-1.14]) and between all-cause cancer incidence rates and land use (1.13 [1.10-1.15]); however, estimates differed by cancer type. Through counterfactual attributable fraction modelling of shifts in levels of adherence to the EAT-Lancet diet, we estimated that up to 19-63% of deaths and up to 10-39% of cancers could be prevented, in a 20-year risk period, by different levels of adherence to the EAT-Lancet reference diet. Additionally, switching from lower adherence to the EAT-Lancet reference diet to higher adherence could potentially reduce food-associated greenhouse gas emissions up to 50% and land use up to 62%.Interpretation Our results indicate that shifts towards universally sustainable diets could lead to co-benefits, such as minimising diet-related greenhouse gas emissions and land use, reducing the environmental footprint, aiding in climate change mitigation, and improving population health. Copyright (C) 2021 International Agency for Research on Cancer; licensee Elsevier. This is an Open Access article published under the CC BY 3.0 IGO license which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In any use of this article, there should be no suggestion that IARC endorses any specific organisation, products or services. The use of the IARC logo is not permitted. This notice should be preserved along with the article's original URL. PB Elsevier sci ltd YR 2021 FD 2021-11-10 LK https://hdl.handle.net/10668/24651 UL https://hdl.handle.net/10668/24651 LA en DS RISalud RD Apr 7, 2025